期刊文献+

带繁殖和退化的微粒群算法 被引量:2

Particle Swarm Optimization with Apomixis and Degenerate
下载PDF
导出
摘要 PSO是一种简单有效的随机全局优化技术,针对其容易陷入局部最优的缺点,论文将繁殖和退化操作引入微粒群算法。算法的主要特点是利用繁殖和退化,扩大搜索范围以提高收敛速度并保持种群的多样性。仿真程序表明,该算法能以较快速度完成给定范围的搜索和全局优化任务。 PSO is a simple stochastic global optimization technique,aiming at the shortcoming of it,that is,easily plunging into local minimum,the apomixis and degenerate operator is involved into particle swarm optimizer in this paper.The advantages are via apomixis and degenerate the speed of convergent and diversity of the swarm are improved apparently.The simulation results show that the algorithms can converge to the global optimum at quicker rate in a given range.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第26期36-37,53,共3页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60234030)
关键词 微粒群优化 繁殖 退化 变异 Particle Swarm Optiization,apomlxis,degenerate,mutation
  • 相关文献

参考文献5

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].In:Proceedings of IEEE International Conference on Neural Networks,Perth Australia,1995:1942~1948 被引量:1
  • 2Van den Bergh F.An analysis of particle swarm optimizers[D].Ph D dissertation.Department of Computer Science,University of Pre2 toria,South Africa,2002 被引量:1
  • 3Angeline P J.Using Selection to Improve Particle Swarm Optimization[C].In:IEEE International Conference on Evolutionary Computation.Anchorage,Alaska,USA,1998 被引量:1
  • 4曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 5高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160

二级参考文献2

共引文献159

同被引文献13

  • 1李学勇,许向阳,邱建雄,欧阳柳波,李国徽.基于Boltzmann行动选择策略的网络蜘蛛搜索算法[J].小型微型计算机系统,2005,26(6):932-935. 被引量:4
  • 2江金龙,薛云灿,冯骏.利用基于分区搜索的自适应遗传算法求解TSP问题[J].河海大学常州分校学报,2005,19(3):1-4. 被引量:1
  • 3滕居特,陈国初,顾幸生.分段式微粒群优化算法[J].华东理工大学学报(自然科学版),2006,32(4):462-465. 被引量:3
  • 4Angeline P J. Using Selection to Improve Particle Swarm Optimization In: IEEE International Conference On Computation. Anchorage, Alaska, USA,1998. 被引量:1
  • 5蒋金山,何春雄,潘少华等.最优化计算方法.广州:华南理工大学出版社,2005. 被引量:2
  • 6James Kennedy, Russell Eberhart. Particle Swarm Optimization/ [ C]. In: IEEE Int'l Conference on Neural Networks, Perth, Australia, 1995. 1942 - 1948. 被引量:1
  • 7James Kennedy, Russell Eberhart. A New Optimizer Using Particle Swarm Theory[C]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43 被引量:1
  • 8Y Shi, R Eberhart. A modified particle swarm optimizer[ C]. In: IEEE World Congress on Computational Intelligence. 1998.68 -73. 被引量:1
  • 9Y Shi, R Eberhart. Fuzzy Adaptive Particle Swarm Optimization [ C ]. In :Proc Congress on Evolutionary Computation, Seoul, Korea,2001. 被引量:1
  • 10C Eberhart, Y Shi. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]. Proceedings of the 2000 International Congress on Evolutionary Computation (San Diego, Calfornia) ,IEEE Service Center, Piscataway, N J,2000. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部