期刊文献+

基于免疫粒子群优化的聚类算法 被引量:4

Clustering Algorithm Based on Immune Particle Swarm Optimization
下载PDF
导出
摘要 K均值算法简单快速,但其结果容易受初始聚类中心影响,并且容易陷入局部极值。该文结合粒子群优化算法和免疫系统中的免疫调节机制与免疫记忆功能对K均值算法进行改进,提出一种基于免疫粒子群优化的聚类算法。实验结果证明,该算法解决了K均值算法存在的对初值敏感的缺点,聚类结果稳定,而且比基于粒子群优化的聚类算法具有更好的聚类效果。 K-means algorithm is simple and fast, however its result is affected by the initial clustering center and easily falls into the local optimum. This paper combines Particle Swarm Optimization(PSO) and adjusting mechanism and the immune memory function of immune system to improve K-means algorithm, and proposes a clustering algorithm based on Immune Particle Swarm Optimization algorithm(IM-PSO-KMEANS). The experiments show that the IM-PSO-KMEANS algorithm overcomes the problems of K-means algorithm, and the results of clustering are better than algorithm based on PSO.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第15期179-181,184,共4页 Computer Engineering
基金 福建省自然科学基金资助项目(A0510008)
关键词 聚类 免疫粒子群优化 K均值 粒子群优化 clustering lmmune-PSO K-means Particle Swarm Optimization(PSO)
  • 相关文献

参考文献6

二级参考文献17

  • 1[1]J. Kennedy and Rt. C. Eberhart. Particle swarm optimization[A]. In Proceedings of the 1995 IEEE International Conference on Neural Networks[ C]. 1995 ;4:1942 - 1948. 被引量:1
  • 2[2]Shit Y and Eberhart RC. A modified particle swarm optimizer[A]. Proceedings of the 1998 IEEE Conference on Evolutionary Computation. AK. Anchorage[C]. 1998. 被引量:1
  • 3[3]Shi Y and Eberhart RC. Parameter Selection in Particle Swarm Optimization[ EB]. http :∥www. engr. input. edu / ~shi/pso/pape/Ep98/psof6/ep98 - pso. html. 2004. 被引量:1
  • 4[1]Jain A K,Murty M N,Flynn P J. Data clustering: A survey[J].ACM Computer Survey, 1999,31:264 - 323. 被引量:1
  • 5[2]Jain A K, Dubes R C. Algorithms for clustering data[ M ]. Englewood Cliffs, NJ: prentice Hall, 1988. 被引量:1
  • 6[3]MacQueen J. Some methods for classification and analysis of multivariate observations[ C ]. In: proceedings of the 5th Berkeley Symposium on mathematics Statistic Problem, 1967,1:281 -297. 被引量:1
  • 7Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publisher,2001. 被引量:1
  • 8Kennedy J,Spears W M.Matching Algorithms to Problems:An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodel Problem Generator[C].Proceedings of the IEEE Int'l Conference on Evolutionary Computation,Anchorage,AK,USA,1998-05:78-83. 被引量:1
  • 9Han Jawei,Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001. 被引量:1
  • 10Jain A K,Dubes R C.Algorithms for Clustering Data[M].New Jersey:Prentice-Hall,1988. 被引量:1

共引文献45

同被引文献39

  • 1牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:15
  • 2KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony(ABC) algorithm [ J]. Journal of Global Optimization,2007,39 (3) :459-171. 被引量:1
  • 3KARABOGA D. An idea based on honey bee swarm for numerical optimization [ D ]. Erciyes : Erciyes University,2005. 被引量:1
  • 4KARABOGA D, BASTURK B. On the performance of artificial bee colony ( ABC ) algorithm [ J ]. Applied Soft Computing, 2008,8 ( 1 ) : 687-697. 被引量:1
  • 5UCI. Date sets[EB/OL], http://archive, ies. uci. edu/ml/datasets. html. 被引量:1
  • 6ANIL K J. Data clustering:50years beyond K-means[J].{H}Pattern Recognition Letters,2010,(08):651-666. 被引量:1
  • 7XIAO J,YAN Y P,ZHANG J. A quantum-inspired genetic algorithm for K-means clustering[J].{H}Expert systems with application,2010,(07):4966-4973. 被引量:1
  • 8CHANG D X,ZHANG X D,ZHENG C W. A genetic algorithm with gene rearrangement for K-means clustering[J].{H}Pattern Recognition,2009,(07):1210-1222.doi:10.1016/j.patcog.2008.11.006. 被引量:1
  • 9KARABOGA D. TR06,an idea based on honey bee swarm for numerical optimization[R].Kayseri,Turkey:Erciyes University,2005. 被引量:1
  • 10KARABOGA D,BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial Bee Colony (ABC)algorithm[J].{H}Journal of Global Optimization,2007,(03):459-471. 被引量:1

引证文献4

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部