期刊文献+

基于免疫粒子群优化的一种动态递归神经网络辨识与控制非线性系统 被引量:3

Immune PSO-based dynamic recurrent neural network for identifying and controlling nonlinear systems
下载PDF
导出
摘要 提出了一种采用免疫粒子群优化算法对动态递归神经网络进行训练的方法,实现了对Elman网络的结构、权重、结构单元的初始输入和自反馈增益因子等参数的同时进化训练。进而针对非线性系统分别提出了相应的辨识与控制算法,并设计出了相应的辨识器和控制器。最后以超声马达为对象进行了仿真,结果表明:基于所提出的算法而设计的辨识器和控制器在辨识和控制过程中不仅都能取得很高的收敛精度和速度,而且对于随机扰动有较强的鲁棒性,从而为非线性系统的辨识和控制提供了一条新的途径。 A learning algorithm for dynamic recurrent Elman neural networks was presented, which is based on an immune particle swarm optimization (PSO). The algorithm computed concurrently the evolution of network structure, weight, initial inputs of the context units and the self-feedback coefficient of the modified Elman network. Thereafter, a novel control method based on the proposed algorithm was introduced and discussed. More specifically, a dynamic identifier was constructed to perform speed identification, and a controller was designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the identifier and the controller based on the proposed algorithm can both achieve higher convergence precision and convergence rate than those based on other state-of-the-art algorithms. In particular, the experiments show that the identifier can approximate the USM's nonlinear input-output mapping accurately. The effectiveness of the controller is verified using constant speed, step and sinusoidal changing speeds.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第4期858-864,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家杰出青年科学基金项目(60625302) “973”国家重点基础研究发展规划项目(2002CB3122000) “863”国家高技术研究发展计划项目(2006AA04Z168) 国家自然科学基金项目(60433020)
关键词 人工智能 控制理论 动态递归神经网络 粒子群优化 免疫系统 超声马达 artificial intelligence control theory dynamic recurrent neural network particle swarm optimization immune system ultrasonic motor
  • 相关文献

参考文献9

  • 1Hayakawa T, Haddad W M, Hovakimyan N, et al. Neural network adaptive control for nonlinear non- negative dynamical systems[J]. IEEE Transactions on Neural Networks, 2005, 16(2) :399-413. 被引量:1
  • 2Xiong Z H, Zhang J. A batch-to-batch iterative optimal control strategy based on recurrent neural network models[J]. Journal of Process Control, 2005, 15(1):11-21. 被引量:1
  • 3葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报(工学版),2005,35(5):511-519. 被引量:21
  • 4Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2) :179-211. 被引量:1
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C] ffProceedings of the IEEE International Conference on Neural Networks, Perth, 1995, 4: 1942- 1948. 被引量:1
  • 6Verkoczy L K, Martensson A S, Nemazee D. The scope of receptor editing and its association with autoimmunity[J]. Current Opinion in Immunology, 2004,16(6) :808-814. 被引量:1
  • 7Xu X, Liang Y C, Lee H P, et al. Mechanical modeling of a longitudinal oscillation ultrasonic motor and temperature effect analysis[J]. Smart Materials and Structures, 2003, 12(4) :514-523. 被引量:1
  • 8Senjyu T, Miyazato H, Yokoda S, et al. Speed control of ultrasonic motors using neural network[J]. IEEE Transactions on Power Electronics, 1998, 13 (3) : 381-387. 被引量:1
  • 9时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119. 被引量:57

二级参考文献32

  • 1Senjyu T, Yokoda S, Uezato K. A study on high-efficiency drive of ultrasonic motors. Electric Power Components and Systems,2001,29(3 ): 179- 189. 被引量:1
  • 2Uehino K. Piezoelectric motors: Overview. Smart Materials and Structures, 1998,7(3):273-285. 被引量:1
  • 3Hagood NW, McFarland AJ. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995,42(2):210--224. 被引量:1
  • 4Senjyu T, Miyazato H, Yokoda S, Uezato K. Speed control of ultrasonic motors using neural network. IEEE Transactions on Power Electronics, 1998,13(3):381-387. 被引量:1
  • 5Lin F J, Wai R3, Shyu KK, Liu TM. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001,48(4):900-913. 被引量:1
  • 6Senjyu T, Yokoda S, Uezato K. Speed control of ultrasonic motors using fuzzy neural network. Journal of Intelligent Fuzzy System,2000,8(2):135-146. 被引量:1
  • 7Lin F J, Wai R J, Hong CM. Recurrent neural network control for LCC-resonant ultrasonic motor drive. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000,47(3):737-749. 被引量:1
  • 8Elman JL. Finding structure in time. Cognitive Science, 1990,14(2):179-211. 被引量:1
  • 9Pham DT, Liu X. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering,1992,2(2):90--97. 被引量:1
  • 10Pham DT, Liu X. Training of Elman networks and dynamic system modeling. International Journal of Systems Science, 1996,27(2):221 -226. 被引量:1

共引文献71

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部