期刊文献+

人工神经网络对孤立性肺结节的诊断价值 被引量:4

Diagnostic value of artificial neural network in solitary pulmonary nodules
下载PDF
导出
摘要 目的利用人工神经网络(ANN)理论,建立一种全新的模式判别方法用于薄层CT上原发良恶性孤立性肺结节(SPN)的鉴别,并探讨其诊断价值及对不同级别医师的辅助诊断作用。方法收集经手术或穿刺活检病理证实的SPN200例(周围型小肺癌135例,良性结节65例),观察3项临床指标和9项薄层CT指标,并对定性指标进行量化。从中随机选择70%左右的样本(140例)作为训练集,建立ANN诊断模型,并与社会科学统计软件(SPSS)分析处理的Logistic回归模型作比较,计算两种模型对所有样本诊断的正确率和ROC曲线下面积。利用训练好的ANN模型对另外60例样本进行测试,分析初、中、高三级放射科医师使用ANN模型前后的ROC曲线下面积。结果ANN模型诊断的正确率为98.0%,高于Logistic回归模型的正确率86.0%(P<0.001);两种模型诊断的ROC曲线下面积分别为0.996±0.004和0.936±0.017,差异有统计学意义(P<0.001)。ANN模型及初、中、高级医师首次诊断的ROC曲线下面积分别为0.954、0.737、0.813、0.874,其中ANN与初、中级医师的差异具有统计学意义(P值分别为0.001、0.007),而与高级医师的差异无显著性(P=0.070);初、中、高级医师使用ANN后的ROC曲线下面积分别为0.920、0.938、0.952,三级医师使用ANN后的诊断能力均有显著提高(P值分别为0.000、0.001、0.039);使用ANN后各级医师对SPN的诊断差异无显著性(初-中级、初-高级、中-高级比较的P值分别为0.614、0.369、0.645)。结论①根据本研究提出的SPN的征象分类可用于建立ANN模型;②ANN模型用于薄层CT上原发良恶性SPN的鉴别诊断优于传统的Logistic回归模型;③ANN模型对于不同级别的放射科医师都有一定程度的辅助诊断作用。 Objective To establish a new-type method in differentiating benign from malignant solitary pulmonary nodule (SPN) on thin-slice CT using artificial neural networks (ANN) theory, and to evaluate its diagnostic value and the aided role to different level radiologists. Methods Two hundred cases with pathologically proved SPN by operation or biopsy (small peripheral lung cancer 135, benign nodules 65) were collected; 3 clinical characteristics and 9 thin-slice CT characteristics were observed and quantified the qualitative characteristics. About 70%of all cases (140 cases) were selected randomly to form training samples, on which ANN model were built and compared with Logistic regression obtained by SPSS. The diagnostic consistent rates and areas under ROC of the two models were then calculated. The trained ANN model was used to test the other 60 cases, and the areas under ROC before and after ANN were analyzed in three different level radiologists. Results The total consistent rate of ANN was greater than that of I.ogistic model (98.0% vs 86.0%, P〈0. 001). Areas under ROC curve were 0. 996±0. 004 and 0. 936±0. 017, respectively, and the difference between the two models was significant (P〈0. 001). The areas under ROC curve in ANN model, the junior, middle and senior radiologists without ANN were 0. 954, 0. 737, 0. 813 and 0. 874, respectively, and the difference between ANN model and the junior, middle radiologists were significant (P=0. 001, P=0. 007, respectively), while the difference between ANN model and the senior radiologists was not significant (P=0. 070). The areas under ROC curve in the junior, middle and senior radiologists with ANN were 0. 920, 0. 938, and 0. 952, respectively, and the performance of junior, middle and senior radiologists with ANN were significantly improved (P〈0. 001, P=0. 001, P=0. 039, respectively). The difference of ability to diagnose SPN among different level radiologists with ANN was not significant (P=0. 614 for junior-middle, P=0. 3
出处 《中国医学影像技术》 CSCD 北大核心 2008年第7期1114-1117,共4页 Chinese Journal of Medical Imaging Technology
基金 北京市自然科学基金资助项目(7062020)
关键词 硬币病变 神经网络 体层摄影术 X线计算机 诊断 鉴别 Coin lesion, pulmonary Neural networks Tomography, X-ray computed Diagnosis, differential
  • 相关文献

参考文献8

  • 1Dickenson BT, Baumert B. Multidetector-row CT of the solitary pulmonary nodule. Seminars in Roentgenology, 2003,38(2):158- 167. 被引量:1
  • 2Shingo I, Naoki M, Mitsuru I, et al. Solitary pulmonary nodules: optimal slice thickness of high-resolution CT in differentiating ma- lignant from benign. Clinical Imaging, 2004,28(5) :322-328. 被引量:1
  • 3王晓华,马大庆,周新华.孤立性肺结节的临床与CT计量诊断[J].中国医学影像技术,2005,21(10):1512-1515. 被引量:10
  • 4Zwizewich CV. Solitary pulmonary nodule : high-resolution CT radiologic-pathologic correlation. Radiology, 1991, 179 ( 5 ) : 469- 476. 被引量:1
  • 5Leer JL 3rd, Klein IS. The solitary pulmonary nodule. Radiol Clin North Am, 2002,40(1) : 123-143. 被引量:1
  • 6Swensen SJ, Brown LR, Colby TV, et al. Pulmonary nodules: CT evaluation of enhancement with iodinated contrast material. Radiology, 1995,194(1) :393-398. 被引量:1
  • 7Aoyama M, Li Q, Katsuragawa S, et al. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med Phys, 2002,29(5) :701- 708. 被引量:1
  • 8Matsuki Y, Nakamura K, Watanabe H, et al. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR, 2002,178(3) :657-663. 被引量:1

二级参考文献10

共引文献9

同被引文献66

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部