期刊文献+

基于传染病动力学农户风险管理参与率行为的数值模拟

The numerical simulation on the rate of farmers participating of risk management based on the dynamics of infectious diseases
下载PDF
导出
摘要 农业保险制度不仅是农业保障体系中重要组成部分,而且已成为国际上最重要的非价格农业保护工具之一。但长期以来,我国农户的农业保险参与率较低且不稳定,造成农业保险几乎处于市场失灵的危险境地。本文把所研究的农业总人口分为三类:不了解农业保险且没有买农业保险的人群;了解农业保险但没有买农业保险的人群;了解农业保险且买了农业保险的人群。建立基于微分方程组的数学模型,探讨了系统平衡点的存在性、稳定性并进行了数值模拟和讨论。 Agricultural insurance is not only important in the agricultural support system, but also it has become one of the most important international non-prices agricultural protection tools. But the rate of Chinese farmers participating in agricultural insurance is low and unstable, resulting in the market failure in the agricultural insurance. In this paper, the study by the agricultural population is classified into three categories: The group of lack of understanding of agricultural insurance and no buying agricultural insurance; The group of understanding of agricultural insurance But no buying agricultural insurance ; The group of Understanding of agricultural insurance and have bought agricultural insurance. We establish the differential equations model, discuss the existence and stability of the system balance, and conduct the numerical simulation.
作者 谷政 游雄
出处 《贵州大学学报(自然科学版)》 2008年第4期428-433,共6页 Journal of Guizhou University:Natural Sciences
基金 国家自然科学基金资助项目(10771099)
关键词 农业保险 参与率 动力学 数值模拟 Agricultural insurance Participation rates Dynamics Numerical simulation
  • 相关文献

参考文献8

  • 1KNIGHT,TAMAS O. and KEITH H. COBLE. Survey of Multiple peril Crop Insurance Literature Since 1980 [ J ], Review of Agricultural economics, 1997, Spring: 128 - 156. 被引量:1
  • 2PETER HAZELL, Carlos Pomareda, and Alberto Valdes. Crop Insurance for Agricultural Development, Issues and Experience[ M ] ,The Johns University Press, 1986. 被引量:1
  • 3马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.
  • 4GRAEF LI M Y,WANG J R,KARSAI L. Global dynamics of a SEIR model with a varying total population size[J] Math Biosci. 1999,160:191 -209. 被引量:1
  • 5BUSENBERG S, P VAN DRIESSCHE. Analysis of a disease transimission model in a population with varying size[J] Math. Biol. 1990,28:257 -270. 被引量:1
  • 6HETHCOTE H W, VAN DEN DRIESSCHE P. Some epidemiological models with nonlinear [J]. Math Biol. , 1991,29:271 -287. 被引量:1
  • 7王世飞,李学志.具有急慢性阶段的MSIS流行病模型阈值和稳定性结果[J].应用泛函分析学报,2005,7(1):83-96. 被引量:1
  • 8KING, RP. and G E OAMEK. Risk Management by Colorado Dryland Wheat Farmers and the Elimination of Disaster Assistance Programs[ J]. Amer. J. Air. Econ, 1983, 65:247-255. 被引量:1

二级参考文献21

  • 1Kermack W O, Makendrick A G. Contributions to the mathematical theory of epidemics, Part Ⅰ [J].Proc Roy Soc A, 1927, 115(5): 700-712. 被引量:1
  • 2Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control [M]. Oxford University Press, Oxford, 1991. 被引量:1
  • 3Li M Y, Muldowney J S. Global stability for SEIR model in epidemiologs[J]. Math Biosci, 1995, 125:155-167. 被引量:1
  • 4Capasso V. Mathematical Structure of Epidemic[M]. Springer-Verlag, Berlin, 1993. 被引量:1
  • 5Hoppenstendt F. An age-structurd epidemic model[J]. J Franklin Inst, 1994, 197: 325-333. 被引量:1
  • 6Busenberg S. Iannelli M, Thieme H. Global behavior of an age-structur epidemic model[J]. SIAM J Math Anal, 1991, 22(4): 1065-1080. 被引量:1
  • 7EI-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmisson and proportionate mixing assumption[J]. Math Comput Modal, 1999, 29: 31-43. 被引量:1
  • 8Greenhalgh D. Threshold and stability results for an epidemic model with an age-structured meeting rate[J]. IAM J Math Appl Med Biol, 1988, 5: 81-100. 被引量:1
  • 9Li X Z, Geni G, Zhu G T. Threshold and stability results for an age-structured SEIR epidemic model[J]. Comp Math Appl, 2001, 42: 883-907. 被引量:1
  • 10Li X Z, Geni G, Zhu G T. Existence and uniqueness of epidemic states for the age-structured MSEIR epidemic model[J]. Acta Math Appl Sinica, 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部