期刊文献+

具有急慢性阶段的MSIS流行病模型阈值和稳定性结果 被引量:1

Threshold and Stability Results for an MSIS Epidemic Model with Acute and Chronic Stages
下载PDF
导出
摘要 系统研究了具有急性和慢性两个阶段的MSIS流行病模型.由两节构成,第1节建立和研究了具有急慢性阶段的MSIS流行病模型;第2节在第1节的基础上建立和研究了具有慢性病病程的MSIS流行病模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程和积分方程中的理论和方法,得到了这两个模型再生数R0的表达式.证明了当R0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方病平衡态的存在性和稳定性条件. This paper considers an MSIS epidemic model with acute and chronic stages. It consists of two sections. Section 1 presents and analyzes an MSIS epidemic model with acute and chronic infection stages, which consists of ODEs; Section 2 studies an MSIS epidemic model with the age of chronic infection, which consists of ODEs and PDEs at the same time. Under the assumption of exponentially change of the total population, the explicit formula of the reproductive numbers R_0 for both models are obtained, the global stability of the disease-free equilibria and stability conditions of the endemic equilibria are given.
出处 《应用泛函分析学报》 CSCD 2005年第1期83-96,共14页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10371105) 河南省杰出青年科学基金(0312002000)
关键词 流行病模型 病程结构 再生数 平衡点 稳定性 急慢性阶段 常微分方程 acute and chronic infection stages MSIS epidemic models age of chronic infection reproductive number steady states stability
  • 相关文献

参考文献22

  • 1马知恩,周义仓编著..常微分方程定性与稳定性方法[M].北京:科学出版社,2001:311.
  • 2Kermack W O, Makendrick A G. Contributions to the mathematical theory of epidemics, Part Ⅰ [J].Proc Roy Soc A, 1927, 115(5): 700-712. 被引量:1
  • 3Anderson R M, May R M. Infectious Diseases of Humans: Dynamics and Control [M]. Oxford University Press, Oxford, 1991. 被引量:1
  • 4Li M Y, Muldowney J S. Global stability for SEIR model in epidemiologs[J]. Math Biosci, 1995, 125:155-167. 被引量:1
  • 5Capasso V. Mathematical Structure of Epidemic[M]. Springer-Verlag, Berlin, 1993. 被引量:1
  • 6Hoppenstendt F. An age-structurd epidemic model[J]. J Franklin Inst, 1994, 197: 325-333. 被引量:1
  • 7Busenberg S. Iannelli M, Thieme H. Global behavior of an age-structur epidemic model[J]. SIAM J Math Anal, 1991, 22(4): 1065-1080. 被引量:1
  • 8EI-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmisson and proportionate mixing assumption[J]. Math Comput Modal, 1999, 29: 31-43. 被引量:1
  • 9Greenhalgh D. Threshold and stability results for an epidemic model with an age-structured meeting rate[J]. IAM J Math Appl Med Biol, 1988, 5: 81-100. 被引量:1
  • 10Li X Z, Geni G, Zhu G T. Threshold and stability results for an age-structured SEIR epidemic model[J]. Comp Math Appl, 2001, 42: 883-907. 被引量:1

同被引文献6

  • 1KNIGHT,TAMAS O. and KEITH H. COBLE. Survey of Multiple peril Crop Insurance Literature Since 1980 [ J ], Review of Agricultural economics, 1997, Spring: 128 - 156. 被引量:1
  • 2PETER HAZELL, Carlos Pomareda, and Alberto Valdes. Crop Insurance for Agricultural Development, Issues and Experience[ M ] ,The Johns University Press, 1986. 被引量:1
  • 3GRAEF LI M Y,WANG J R,KARSAI L. Global dynamics of a SEIR model with a varying total population size[J] Math Biosci. 1999,160:191 -209. 被引量:1
  • 4BUSENBERG S, P VAN DRIESSCHE. Analysis of a disease transimission model in a population with varying size[J] Math. Biol. 1990,28:257 -270. 被引量:1
  • 5HETHCOTE H W, VAN DEN DRIESSCHE P. Some epidemiological models with nonlinear [J]. Math Biol. , 1991,29:271 -287. 被引量:1
  • 6KING, RP. and G E OAMEK. Risk Management by Colorado Dryland Wheat Farmers and the Elimination of Disaster Assistance Programs[ J]. Amer. J. Air. Econ, 1983, 65:247-255. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部