期刊文献+

类间学习神经网络的人脸表情识别 被引量:4

Facial expression recognition using neural network of congener learning
下载PDF
导出
摘要 针对目前表情识别类间信息无关状态,提出了一种表情类间学习的神经网络分类识别算法。该算法首先构建一个BP网络学习对和一个距离判据单元,该距离判据单元仅用来计算类间的实际距离,类间期望距离是根据大量实验结果获得的;然后通过类内实际输出和类间期望距离来修正该网络;最后给出一组实例样本进行表情分类识别。实验结果表明,该算法能有效地识别人脸表情,能紧密地将各类表情间的信息联系起来,效率和准确性均有明显提高。 In view of the current unrelated status of expressions recognition in congener information, this paper proposed an algorithm of the neural network classification of expression congener learning. The algorithm first built a pair of network of BP and an unit of the distance judgment evidence which was only used to calculate the actual distance between categories, and the congener expected distance was obtained under a lot of experiments, then amended the network by the actual output of inner class and the expected distance of congener, finally tested expression recognition through a set of samples. The experimental results demonstrate the feasibility of the algorithm which is able to link information between two expressions at random closely. It shows that the algorithm can improve the efficiency and accuracy of facial expression recognition obviously.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期2219-2222,共4页 Application Research of Computers
基金 湖南省自然科学基金资助项目(06JJ50109)
关键词 表情识别 类间学习 神经网络 类间期望 距离判据 expression recognition congener learning neural network congener expectations distance judgment evidence
  • 相关文献

参考文献20

  • 1EKMAN P,FRIESEN W V. Facial action coding system[ M]. Palo Alto : Consulting Psychologists Press, 1978. 被引量:1
  • 2高文,金辉.面部表情图像的分析与识别[J].计算机学报,1997,20(9):782-789. 被引量:42
  • 3TURK M, PENTLAND A. Eigenfaces for recognition [ J ]. Cognitive Neuroscience, 1991,3( 1 ) :71-86. 被引量:1
  • 4PADGETT C, COTTRELL G. Identifying emotion in static face images[ C]// Proc of the 2nd Joint Symposium on Neural Computation: San Diego : University of California, 1995:91 - 101. 被引量:1
  • 5LANITIS A, TAYLOR C, COOTES T. A unified approach to coding and interpreting face images [ C ]//Proc of the 5th International Conference on Computer Vision ( ICCV' 95 ). 1995:368- 373. 被引量:1
  • 6WONG Jia-jun, CHO S Y. Facial emotion recognition by adaptive processing of tree structures [ C ]//Proc of ACM Symposium on Applied computing. 2006:23-30. 被引量:1
  • 7CHO S Y , WONG Jia-jun. Probabilistic based recursive model for face recognition [R] //Lecture Notes in Computer Science 3641. [ S. l. ]:Springer-Verlag, 2005 : 1245 - 1254. 被引量:1
  • 8KRUEGER V, SOMMER G. Gabor wavelet networks for object representation[ J]. Journal of the Optical Society of America, 2002, 19(6) :1112-1119. 被引量:1
  • 9LIU C, WECHSLER H. Independent component analysis of Gabor features for face recognition[ J]. IEEE Trans on Neural Networks, 2003,14(4) :919.928. 被引量:1
  • 10GHIJSEN M, HEYLEN D, NIJHOLT A, et al Facial affect displays during tutoring sessions[ C]//Proc of International Conference on Intelligent User Interfaces. San Diego, CA: [ s. n. ] ,2005. 被引量:1

二级参考文献3

共引文献41

同被引文献36

  • 1廖岳,万峰,杜明辉.弹性模板匹配算法中的特征选择[J].计算机应用,2004,24(B12):212-214. 被引量:5
  • 2王志良,刘芳,王莉.基于计算机视觉的表情识别技术综述[J].计算机工程,2006,32(11):231-233. 被引量:12
  • 3朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 4Liu C.W eehsler H.A Gabor feature classifier for face recognition[A].In:Proceedings of the Eighth IEEE International Conference on Computer Vision[C].Vancouver,Canada,2001,2:270-275. 被引量:1
  • 5Liu C,Weehsler H.Independent component analysis of Gabor features for face recognition[J].IEEE Transactions on NeuralNetworks,2003,14(4):919-928. 被引量:1
  • 6Shih F Y,Chuang C.Automatic extraction of head and faceboundaries and facial features[J].Information Sciences,2004,158(1):117-130. 被引量:1
  • 7ZHANG Yu-nong, GE S S, LEE T H. A unified quadraticprogramming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators [ J ]. IEEE Trans on Systems, Man, and Cybernetics,2004,34 ( 5 ) : 2126- 2132. 被引量:1
  • 8ZHANG Yu-nong, MA Wei-mu, CAI Bing-huang. From zhang neural network to Newton iteration for matrix inversion [ J], IEEE Trans on Circuits and Systems-I : Regular Papers, 2009, 56 ( 7 ) : 1405- 1415. 被引量:1
  • 9ZHANG Yu-nong, GE S S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion [ J ]. IEEE Trans on Neural Networks,2005,16(6) :1477-1490. 被引量:1
  • 10ZHANG Yu-nong, YIN Jiang-plng, CAI Bing-huang. Infinity-norm acceleration minimization of robotic redundant manipulators using the LVI-based primal-dual neural network[J]. Robotics and Computer- Integrated Manufacturing,2009,25(2) :358-365. 被引量:1

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部