期刊文献+

基于提升Directionlet域高斯混合尺度模型的SAR图像噪声抑制 被引量:11

SAR Image Denoising Based on Lifting Directionlet Domain Gaussian Scale Mixtures Model
下载PDF
导出
摘要 提出了一种新的SAR图像相干斑噪声抑制方法.该方法将高斯混合尺度(GSM)模型引入Directionlet变换域,构造了基于提升Directionlet分解系数的邻域模型,并利用Bayes最小均方估计进行局部去噪.作为一种新的多尺度几何分析工具,Directionlets通过多方向选择来捕捉图像中各向异性特征,滤波器结构为可分离设计;采用提升方案进一步减小变换的运算量.文中对相邻位置和尺度的系数建立GSM模型,能较好地描述系数的边缘分布,充分体现邻域间系数的相关性.对大量真实SAR图像的去噪实验表明,文中方法取得了比空域滤波及小波方法更优的去噪性能,同时在图像边缘等细节特征保持方面具有明显优势. In this paper, a new speckle suppression method for SAR image is proposed. By combining Directionlet transform with a version of the hidden Markov model--Gaussian scale mixtures (GSM), the marginal distributions of neighbor coefficients in the lifting Directionlet domain are modeled. For removing the speckle noise, the Bayes least square estimation is adopted to evaluate each coefficient. Being regarded as a novel multiscale geometrical analysis tool, Directionlet transform retains the separable filtering, computation simplicity and filter design from the standard two-dimensional wavelet transform, which can capture anisotropic geometrical structures efficiently by multi-direction selection. The introduction of lifting scheme reduces computation amount greatly. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables. A Gaussian vector and a hidden positive scalar multiplier. Under this model, the marginal of neighbor coefficients are well described and the strong correlation among the amplitudes of neighbor coefficients is also presented adequately. Experiments using plentiful real SAR images indicate that the proposed method outperforms the spatial filters and other methods based on wavelets in terms of speckle reduction as well as image detail preservation.
出处 《计算机学报》 EI CSCD 北大核心 2008年第7期1234-1241,共8页 Chinese Journal of Computers
基金 国家“八六三”高技术研究发展计划项目基金(2007AA12Z136) 国家“九七三”重点基础研究发展规划项目基金(2006CB705700) 国家自然科学基金(60672126) 国家教育部博士点基金(20050701013)资助
关键词 SAR图像 Directionlet变换 高斯混合尺度模型(GSM) 提升方案 斑点噪声 SAR image Directionlet transform Gaussian scale mixtures(GSM) lifting scheme speckle noise
  • 相关文献

参考文献14

  • 1Lee J S. Digital image enhancement and noise filtering by use of local statistics. IEEE Transactions on Pattern Analysis Machine Intelligence, 1980, 2(2): 165-168. 被引量:1
  • 2Baraldi A, Parmigiani F. A refined Gamma MAP SAR speckle filter with improved geometrical adaptivity. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 (5) : 1245-1257. 被引量:1
  • 3Donoho D L. Denoising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. 被引量:1
  • 4Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 2003, 12 (11) : 1338-1351. 被引量:1
  • 5Xie H, Pierce L E, Ulaby F T. SAR speckle reduction using wavelet denoising and Markov random field modeling. IEEE Transactions on Geoscience Remote Sensing, 2002, 40(10): 2196- 2212. 被引量:1
  • 6Velisavljevie V, Beferull-Lozano B, Vetterli M, Dragotti P L. Approximation power of Directionlets//Proceedings of the IEEE International Conference on Image Processing (ICIP 2005). Genova, Italy, 2005, 1: I- 741-4. 被引量:1
  • 7Velisavljevic V, Beferull-Lozano B, Vetterli M, Dragotti P L. Directionlets: Anisotropic multi-directional representation with separable filtering. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933. 被引量:1
  • 8Candes E J. Ridgelets: Theory and applications [Ph. D. dis sertation]. Department of Statistics, Stanford University, 1998. 被引量:1
  • 9Donoho D L. Wedgelets: Nearly-minimax estimation of edges. Annals Statistics, 1999, 27(3): 857-897. 被引量:1
  • 10Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing, 2002, 11(6): 670-684. 被引量:1

同被引文献191

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部