期刊文献+

一类脉冲非线性时滞系统的周期正解

Existence of positive periodic solution of a class of nonlinear time delay systems with impulses
下载PDF
导出
摘要 利用Mawhin重合度理论和分析技巧,讨论了一类具有脉冲的非线性时滞系统的周期正解,获得了较简便的判别条件. Using Mawhin's coincidence degree theory and some analysis techniques, some new sufficient conditions are obtained for the existence of at least one strictly positive periodic solution for a class of nonlinear time delay systems with impulses.
出处 《西北师范大学学报(自然科学版)》 CAS 2008年第2期1-5,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10671158) 甘肃省555创新人才工程资助项目
关键词 传染病模型 周期正解 重合度 时滞 脉冲 infectious model positive periodic solution coincidence degree time delay impulse
  • 相关文献

参考文献11

  • 1LAJMANOVICH A,YORKE T A.A deterministic model for gonorrhea in a nonhomogeneous populaton[J].Math Biosci,1976,28:221-236. 被引量:1
  • 2ARONSSON G,MELLANDER I.A deterministic model in biomathematics,asymptotic behavior and threshold conditions[J].Math Biosci,1980,49:207-222. 被引量:1
  • 3BUSENBERG S COOKE K L.Periodic solution of a periodic nonlinear delay differential equation[J].Siam Appl Math,1978,35:704-721. 被引量:1
  • 4陈柳娟.一类非线性连续分布时滞系统的周期正解[J].数学的实践与认识,2006,36(4):151-157. 被引量:2
  • 5DONG Yu-jun,ZHOU Er-xin.An application of coincidence continuation theorem in existence of solutions of impulsive differential equations[J].J Math Anal Appl,1996,197:875-889. 被引量:1
  • 6HUO Hai-feng.Existence of positive periodic solutions of a neutral delay Lotka-Volterra system with impulses[J].Comput Math Appl,2004,48:1833-1846. 被引量:1
  • 7LI Yong-kun,LU Ling-hong.Global exponential stability and existence of periodic solution of Hopfield-type neural networks with impulses[J].Physics Letters A,2004,333:62-71. 被引量:1
  • 8ZHEN Jin-zhen,MA Zhi-en,HAN Mao-an.The existence of periodic solutions of the n-species Lotka-Volterra competiton systems with impulsive[J].Chaos,Solitions Fractals,2004,22(4):181-188. 被引量:1
  • 9陈柳娟,孙建华.一个传染病模型的周期正解[J].系统科学与数学,2006,26(4):456-466. 被引量:2
  • 10GAINES R E,MAWHIN J L.Coincidence Degree and Nonlinear Differential Equation[M].Berlin:Springer-Verlag,1977. 被引量:1

二级参考文献10

  • 1陈伯山.一类非线性周期时滞系统的周期解[J].应用数学学报,1994,17(4):541-550. 被引量:5
  • 2定光桂.巴拿赫空间引论[M].北京:科学出版社,1999.. 被引量:11
  • 3Lajmanovich A, Yorke T A. Adeterministic model for gonorrhea in a nonhomogeneous populaton[J]. Math Biosci,1976,28:221--236. 被引量:1
  • 4Aronsson G, Mellander 1. Adeterministic model in biomathematics, asymptotic behavior and threshold conditions[J]. Math Biosci, 1980,49:207--222. 被引量:1
  • 5Busenberg S, Cooke K L. Periodic solution of a periodic nonlinear delay differential equation[J]. SIAM APPLMATH, 1978,35:704--721. 被引量:1
  • 6Gaines R E, Mawhi J L. Coincidence Degree and Nonlinear Differential Equations[M]. Springer-Verlag, Berlin,1977. 被引量:1
  • 7Lajmanovich A,Yorke T A.Adeterministic model for gonorrhea in a nonhomogeneous populaton.Math.Biosci,1976,28:221-236. 被引量:1
  • 8Aronsson G,Mellander I.Adeterministic model in biomathematics,asymptotic behavior and threshold conditions.Math.Biosci,1980,49:207-222. 被引量:1
  • 9Busenberg S,Cooke K L.Periodic solution of a periodic nonlinear delay differential equation.SIAM Appl.Math.,1978,35:704-721. 被引量:1
  • 10冯春华.一个传染病模型的周期正解[J].生物数学学报,1997,12(4):339-344. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部