摘要
本文考虑二阶四点共振边值问题x″(t)=f(t,x(t),x′(t)),0<t<1,x(0)= ax(ξ),x(1)=bx(η).通过建立上下解方法,应用Mawhin重合度理论,获得了一些多解性结果.
In this paper,we deal with the second-order four-point boundary value problem.By applying the coincidence degree theory,the method of lower and upper solutions is established.Then some existence theorems for BVPs at resonance are proved.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第3期557-566,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10671012)
关键词
上下解
四点边值问题
共振
upper and lower solutions
four-point boundary value problem
at resonance