期刊文献+

具有最小曲率变化率的几何Hermite曲线 被引量:3

Geometric Hermite Curves with Minimum Curvature Variation
下载PDF
导出
摘要 通过在Hermite插值过程中最优化端点切矢的模长,使最优几何Hermite曲线的曲率变化率最小;得到并证明了使最优几何Hermite曲线达到几何光顺的切矢角约束条件.针对切矢角不满足该约束条件的情况,提出了构造2-分段和3-分段组合最优几何Hermite曲线的方法.最后通过实例及比较表明,该方法与基于应变能最小的方法可相互补充,在整个切矢角区域上达到满意的效果. The magnitudes of the endpoint tangent vectors are optimized in the process of Hermite interpolation so that the curvature variation of the optimized geometric Hermite curve is a minimum. The tangent angle constraints guaranteeing an optimized geometric Hermite curve geometrically smooth is got and proved. For the cases in which the given tangent vectors do not satisfy the constraints, new methods for constructing 2-segment and 3-segment composite optimized geometric Hermite curves are presented. Examples have been presented to shown that combination of these new methods and those based on strain energy minimization can get satisfying results in all the tangent angle regions.
作者 迟静 张彩明
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第7期882-887,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60603077,60403036,60573181) 山东省自然科学基金(Y2005G15)
关键词 曲率变化率 应变能 几何光顺 HERMITE curvature variation strain energy geometrically smooth Hermite
  • 相关文献

参考文献11

  • 1Zhang C, Zhang P, Cheng F. Fairing spline curves and surfaces by minimizing energy [J]. Computer-Aided Design, 2001, 33 (13): 913-923 被引量:1
  • 2de Boor C, Hollig K, Sabin M. High accuracy geometric Hermite interpolation [J]. Computer Aided Geometric Design, 1987, 4(4):269-278 被引量:1
  • 3Hollig K, Koch J. Geometric Hermite interpolation [J].Computer Aided Geometric Design, 1995, 12 (6): 567-580 被引量:1
  • 4Hollig K, Koch J. Geometric Hermite interpolation with maximal order and smoothness [J]. Computer Aided Geometric Design, 1996, 13 (8):681-695 被引量:1
  • 5Reif U. On the local existence of the quadratic geometric Hermite interpolant [J]. Computer Aided Geometric Design, 1999, 16(3):217-221 被引量:1
  • 6Schaback R, Optimal geometric Hermite interpolation of curves[C]//Proceedings of Mathematical Methods for Curves and Surface II, Lillehammer, 1998:1-12 被引量:1
  • 7Meek D S, Walton D J. A geometric Hermlte interpolation with Tsehirnhausen eubies [J]. Journal of Computational and Applied Mathematics, 1997, 81(2): 299-309 被引量:1
  • 8Meek D S, Walton D J. Hermite interpolation with Tsehirnhausen cubic spirals [J]. Computer Aided Geometric Design, 1997, 14(7): 619-635 被引量:1
  • 9Farouki R T, Sakkalis T. Pythagorean hodographs [J]. IBM Journal of Research. Develop, 1990, 34(5): 736-752 被引量:1
  • 10Zhu J M, Duan Q, Tian M, etal. Cubic geometric Hermite interpolation spllne with minimum strain energy [J]. Journal of Information & Computational Science, 2005, 2(3): 625- 629 被引量:1

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部