期刊文献+

基于特征选择和协同模糊聚类的模糊建模研究 被引量:2

Fuzzy modeling based on feature selection and collaborative fuzzy clustering
下载PDF
导出
摘要 为了提高模糊模型辨识效率,提出了一种新的模糊模型建摸方法,该方法由两步组成:(1)采用基于特征相似性的特征选择方法,去除原始数据的冗余;(2)利用协同模糊聚类与G-K相结合的算法初始化模糊模型,使其前件和后件参数得到优化。采用该算法对有效的特征进行协同模糊聚类,模型参数得到改善,提高了模糊模型辨识的效率。模糊建模的实验结果表明了该方法的有效性。 In order to improve the efficiency of fuzzy identification,a new approach to build fuzzy model is proposed.The approach is composed of two phases.The first one is to remove redundant information by feature selection approach using feature similarity.The second one is to identify the initial fuzzy system using the collaborative fuzzy clustering algorithm.The antecedent and consequent parameters of fuzzy model can be optimized.The collaborative fuzzy clustering is applied to extracted features to improve the parameters and efficiency of the fuzzy model.The results of experiments show the effectiveness of the proposed method for fuzzy modeling
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期46-49,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60472060,No.60572034) 江苏省自然科学基金(the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2006081) 2006年教育部新世纪优秀人才计划项目(Program for New Century Excellent Talents in University of China)
关键词 T—S模糊模型 协同模糊聚类算法 特征选择 Takagi-Sugeno fuzzy model collaborative fuzzy clustering feature selection
  • 相关文献

参考文献10

  • 1Abonyi J,Roubos J A.Compact TS-fuzzy models through clustering and OLS plus FIS model reduction [C]//Proc of IEEE International Conference on Fuzzy Systems,Sydney,Australia,2001. 被引量:1
  • 2mitra P,Pal S K.Unsupervised feature selection using feature similarity[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24(3):301-312. 被引量:1
  • 3Pedl:ccz W.Collaborative fuzzy clustering[J].Pattern Recognition Letters, 2002,23(14) : 1675-1686. 被引量:1
  • 4张永,邢宗义,向峥嵘,胡维礼.基于Pareto协同进化算法的TS模糊模型设计[J].控制与决策,2006,21(12):1332-1337. 被引量:2
  • 5边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社.1999. 被引量:15
  • 6Abonyi J, Babuska B, Szeifert F.Modified gath-geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models [J].IEEE Transactions on Systems,Man,and Cybernetics,2002,32(5):612-621. 被引量:1
  • 7Bargiela A,Pedrycz W.A model of granular data:a design problem with the Tchebyschev FCM[J].Source,Soft Computing-A Fusion of Foundations,Methodologies and Applications Archive,2005,9(3): 155-163. 被引量:1
  • 8邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 9Porter R,Canagarajah N.A robust automatic clustering scheme for image segmentation using wavelets[J].IEEE Transactions on Image Processing, 1996,5 ( 4 ) : 662-665. 被引量:1
  • 10黄金杰,李士勇,蔡云泽.一种建立粗糙数据模型的监督模糊聚类方法[J].软件学报,2005,16(5):744-753. 被引量:12

二级参考文献68

  • 1邢宗义 ,贾利民 ,张永 ,胡维礼 ,秦勇 .一类基于数据的解释性模糊建模方法的研究[J].自动化学报,2005,31(6):815-824. 被引量:12
  • 2Pawlak Z. Rough Set: Theoretical Aspects of Reasoning about Data Boston: Kluwer Publishers, 1991. 被引量:1
  • 3Skowron A, Peters J F. Rough sets: Trends and challenges. In: Wang G, Liu Q, Yao Y, Skowron A, eds. Rough Sets, Fuzzy Sets,Data Mining and Granular Computing. LNAI 2639, Berlin, Heidelberg: Springer-Verlag, 2003.25-34. 被引量:1
  • 4Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences,2004,162(2) :65-80. 被引量:1
  • 5Peters JF, Skowron A. A rough sets approach to knowledge discovery. International Journal of Intelligent Systems, 2002,17(2):109-112. 被引量:1
  • 6Huang C-C, Tseng T-L. Rough set approach to case-based reasoning application. Expert Systems with Applications, 2004,26(3):369-385. 被引量:1
  • 7Polkowski L. Toward rough set foundations-mereological approach. In: Tsumoto S, Slowinski R, Komorowski HJ, Grzymala-Busse JW, eds. Rough Sets and Current Trends in Computing. LNAI 3066, Berlin, Heidelberg: Springer-Verlag, 2004. 8-25. 被引量:1
  • 8Peters JF, Skowron A, Synak P, Ramanna S. Rough sets and information granulation. LNCS 2715, Heidelberg: Springer-Verlag,2003. 370-377. 被引量:1
  • 9Han JC, Hu XH, Nick C. Supervised learning: A generalized rough set approach. In: Ziarko W, Yao Y, eds. Rough Sets and Current Trends in Computing. LNAI 2005, Heidelberg: Springer-Verlag, 2001. 322-329. 被引量:1
  • 10Slowinski R, Vanderpooten D. A generalized definition of rough approximations based on similarity. IEEE Trans. on Knowledge and Data Engineering, 2000,12(2):331-336. 被引量:1

共引文献37

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部