期刊文献+

基于T-S模糊模型的HVAS涂层耐磨性能辨识

Identification of Wear Resistance of HVAS (High Velocity Arc Spraying) Coating Based on T-S Fuzzy Model
原文传递
导出
摘要 针对大型轴类零件的高速电弧喷涂(HVAS)修复的复杂性、非线性和难以用明确数学模型表达的特点,采用模糊C均值聚类算法得出输入空间的划分和聚类中心,最后结合递推最小二乘法辨识后建参数,建立了涂层耐磨性能与喷涂工艺参数的T-S模糊模型。将该辨识算法对实测数据进行了验证,在试验范围内,误差在-8.6%~5.8%之间。结果表明,该T-S辨识模型具有较高的辨识精度及较强的泛化能力。利用所建的模糊辨识结果,分析了喷涂工艺参数对涂层耐磨性能的影响规律,并获得了涂层硬度(HRC)极大值为92.04的最佳喷涂工艺参数。 Aiming at the characteristics of complexity, non-linear and multi-model of HVAS recovery for large shaft, by using fuzzy C-means clustering algorithm to obtain input space location and the clustering center, T-S model of wear resistance with spraying parameters of the coating was established based on the least square method identifying consequent parameters. The T-S fuzzy model was verified with the experimental data. The results show that the error is in range of -8.6%~5.8% in experimental range. The T-S fuzzy model exhibits the higher identification precision and desirable generation ability. Effects of spraying parameters on wear resistance of the coating were analyzed by the established model, and the maximum value of hardness of the coating, such as HRC 92.4, was presented with the optimized spraying parameters.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2011年第6期520-524,共5页 Special Casting & Nonferrous Alloys
基金 重庆市教委科技资助项目(KJ090704 KJ100722) 重庆市科技攻关重点资助项目(CSTC 2009AB3234)
关键词 T-S模糊模型 耐磨性能 C均值聚类 模糊辨识 T-S Fuzzy Model Wear Resistance Fuzzy C-means Fuzzy Identification
  • 相关文献

参考文献11

二级参考文献72

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部