期刊文献+

基于简单向量距离法的文本分类反馈学习技术的研究

A feedback learning technology for text classification based on vector space method
下载PDF
导出
摘要 根据相关反馈技术的基本原理,研究了基于简单向量距离分类方法的文本分类反馈学习技术,给出了具体实现方法并进行了相应的实验验证.实验结果表明,反馈学习能明显提高分类能力. Based on the principle of feedback learning, a feedback way of vector space method-based text classification were discussed. The detail of feedback algorithm was presented and the experimental test was carried out. The result showed that the feedback learning could greatly improve the performance of classification.
作者 王潇
出处 《仲恺农业技术学院学报》 2008年第1期46-49,共4页 Journal of Zhongkai Agrotechnical College
基金 仲恺农业技术学院校级科研基金(G3071815)资助项目
关键词 简单向量距离 反馈 学习 vector space method feedback learning
  • 相关文献

参考文献4

二级参考文献13

  • 1Osuna E,Freund R,Girosi T. Training support vector machines: An application to face detection[A]. Proc of the IEEE Int Conf on Computer Vision and Pattern Recognition[C].New York,1997.130-137. 被引量:1
  • 2Joachims T. Text categorization with support vector machines: Learning with many relevant features[A]. Proc of the European Conf on Machine Learning[C].Berlin: Springer,1998.137-142. 被引量:1
  • 3Yang Yiming, Liu Xin. A re-examination of text categorization methods[A]. Proc of ACM SIGIR Conf on Research and Development in Information Retrieval[C].Berkeley,1999.42-49. 被引量:1
  • 4Rocchio J J. Relevance feedback in information retrieval[A].The SMART Retrieval System Experiments in Automatic Document Processing[C]. Ne Jersey: Prentice Hall Inc,1971.313-323. 被引量:1
  • 5Ide E. Relevance feedback in an automatic document retrieval system[R]. Ithaca, NY: Cornell University,1969. 被引量:1
  • 6Salton G. The SMART Retrieval System[M]. Englewood Cliffs N J: Prentice Hall,Inc,1971. 被引量:1
  • 7Lee Joon Ho. Combining the evidence of different relevance feedback methods for information retrieval[J].Information Processing & Management,1998,34(6):681-691. 被引量:1
  • 8LEWIS,RIGUETTE.A comparison of two learning of two learning algorithms for text categorization[A]. In third Annual Symposium on Document Analysis and IR[C]. 1994. 被引量:1
  • 9CRAVEN,DIPASQUO.Learning to extract symbolic knowledge from the World Wide Web[A].Proceedings of AAAI-98[C]. 1998. 被引量:1
  • 10SCOTT S.Feature Engineering for a symbolic approach to text classification[D].Thesis for Master degree,Ottawa-Carleton Institute for Computer Science,1998. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部