期刊文献+

高浓度臭氧在分子束外延法制备Bi系氧化物薄膜中的应用 被引量:2

APPLICATION OF HIGH-CONCENTRATION OZONE IN THE PREPARATION OF Bi-BASED OXIDE THIN FILMS BY MOLECULAR BEAM EPITAXY
下载PDF
导出
摘要 利用硅胶吸附解吸臭氧原理自制了臭氧浓缩装置,通过此装置制备的高浓度臭氧作为分子束外延制备Bi系氧化物薄膜的氧化源.在臭氧浓缩装置中,硅胶温度保持在-85℃左右,工作6h,可获得浓度(摩尔分数)高于95%的臭氧.当臭氧浓缩装置中压强保持在1.3×10^3Pa,该臭氧浓度可维持5h以上.X射线衍射结果表明,制备的高浓度臭氧在高真空条件下可将Cu氧化成CuO,并以此为氧化源利用分子束外延在MgO(100)衬底上制备了较高质量的Bi2Sr2CuO6+x和Bi2Sr2CaCu2O8+x薄膜. Using the principle of silica gel adsorbed-desorbed ozone, a homemade ozone concentrating apparatus was devised, and the high-concentration ozone was used as oxide source in molecular beam epitaxy (MBE) to prepare Bi based oxide thin fili:ns. The concentration (molar fraction) of ozone reached above 95% when the silica gel was kept at about -85 ℃ for 6 h, and can be kept over 5 h when the pressure in concentrating apparatus kept 1.3 × 10^3 Pa. X-ray diffraction (XRD) demonstrated that the high-concentration ozone can oxidize Cu to CuO in high vacuum. Furthermore, the oxide source is good enough to prepare high-quality Bi2Sr2CuO6+x and Bi2Sr2CaCu2O8+x thin films on the MgO (100) substrates by MBE.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2008年第6期647-651,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金50572013
关键词 臭氧 浓缩装置 Bi系氧化物薄膜 分子束外延 ozone, concentrating apparatus, Bi-based oxide thin film, molecular beam epitaxy (MBE)
  • 相关文献

参考文献19

  • 1Bove P, Rogers D J, Hosseini Teherani F. J Cryst Growth, 2000; 220:68 被引量:1
  • 2Brazdeikis A, Karlsson U O, Flodstrom A S. Thin Solid Films, 1996; 281-282:57 被引量:1
  • 3Schlom D G, Marshall A F, Sizemore J T, Chen Z J, Eckstein J N, Bozovic I, Von Dessonneck K E, Harris J S Jr, Bravman J C, J Cryst Growth, 1990; 102:361 被引量:1
  • 4Nakayama Y, Tsukada I, Uchinokura K. J Appl Phys, 1991; 70:4371 被引量:1
  • 5Qi Y, Sakai K, Murakami H, Ito T. Appl Surf Sci, 2001;169-170:335 被引量:1
  • 6Ingrey S, Lau W M, Mclntyre N S. J Vac Sci Technol, 1986; 4A: 984 被引量:1
  • 7Halder S, Schneller T, Meyer R, Waser R. J Appl Phys, 2005; 97:114904 被引量:1
  • 8Hosokawa S, Ichimura S. Rev Sci Instrum, 1991; 62:1614 被引量:1
  • 9Gibbons B J, Fan Y, Findikoglu A T, Jia Q X, Reagor D W. J Vac Sci Technol, 2001; 19A: 56 被引量:1
  • 10Kubinski D J, Hoffman D W, Soltis R E, Logothetis E M. J Appl Phys, 1992; 71:1860 被引量:1

二级参考文献16

共引文献13

同被引文献29

  • 1张劲松,康伟.Bi系高温超导线材的发展历史及应用现状[J].新材料产业,2004(7):65-71. 被引量:3
  • 2Sato H,Naito M,Tsukada A,Karimoto S,Matsuda A.Physica,2001;362C:186 被引量:1
  • 3Marino A,Ichikawa F,Rodriguez H,Rinderer L.Physica,1997;282-287C:2277 被引量:1
  • 4Lee K,Song I,Park G.J Appl Phys,1993;74:1459 被引量:1
  • 5Ishibashi T,Kawata T,Yufune S,Sato K.J Phya:ConfSer,2006;43:255 被引量:1
  • 6Polyakov S N,Kov'ev E K,Kupriyanov M Yu,Pfueh A,Wiese A,Seidel P.Supercond SciTechnol,1996;9:99 被引量:1
  • 7Murakami H,Kiwa T,Tonouchi M,Yasuda T.Physica,2003;388-389C:479 被引量:1
  • 8Kikuchi M,Kato T,Ohkura K,Ayai N,Fujikami J,Fujino K,Kobayashi S,Ueno E,YamazakiK,Yamade S,Hayashi K,Sato K,Nagai T,Matsui Y.Physic.a,2006;445-448C:717 被引量:1
  • 9Latyshev Yu I,Orlov A P,Nikitina A M,Monceau P,Klemm R A.Phys Rev.2004;70B:094517-1 被引量:1
  • 10Saini N L,Lanzara A,Bianconi A,Oyanagi H.Phys Rev,1998;58B:11768 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部