期刊文献+

畸形波数值模拟的一个有效模型 被引量:6

An efficient model for numerical simulation of freak waves
下载PDF
导出
摘要 基于控制深水复波包演化的修正的四阶非线性薛定谔方程和离散时间步长的伪谱方法,建立了畸形波生成的数值模型,模拟了边带扰动初始条件下满足边带不稳定性条件时波列的演化,统计了演化过程中生成的畸形波,并对该过程中谱成分能量的变化进行了分析.结果表明,采用该模型可以有效地模拟畸形波的生成,边带不稳定性是畸形波生成的一个可能原因,而且多对不稳定边带的相互作用增加了畸形波生成的概率. A numerical wave model is developed to simulate freak wave generation, which is based on the modified four-order nonlinear Schrodinger envelope in deep water and a standard split-ste equation governing the slow variation of complex p, pseudo-spectral method. The evolution of wave trains with a pair of initial sideband disturbance is carried out when sideband instability is satisfied, freak wave occurrence is estimated, and variation of complex envelope spectral components is also discussed in this process. Results show that this model can be used to simulate freak wave formation efficiently, sideband instability is its possible mechanism, and the interaction of multiple pairs of instable sidebands increases its generation probability.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期406-410,共5页 Journal of Dalian University of Technology
基金 教育部科技重点资助项目(104061)
关键词 畸形波 四阶非线性薛定谔方程 伪谱方法 数值模型 边带不稳定性 freak wavel four-order nonlinear Schrodinger equation pseudo-spectral methodlnumerical model sideband instability
  • 相关文献

参考文献12

  • 1KLINTING P,SAND S.Analysis of prototype freak waves[C]//Coastal Hydrodynamics.New York:ASCE,1987:618-632 被引量:1
  • 2KHARIF C,PELINOVSKY E.Physical mechanisms of the rogue wave phenomenon[J].European Journal of Mechanics B/Fluids,2003,22:603-634 被引量:1
  • 3OSBORNE A R,ONORATO M,SERIO M.The nonlinear dynamics of rogue waves and holes in deep water gravity wave trains[J].Physics Letters A,2000,275:386-393 被引量:1
  • 4OSBORNE A R.The random and deterministic dynamics of 'rogue waves' in unidirectional,deep water wave trains[J].Marine Structures,2001,14:275-293 被引量:1
  • 5ONORATO M,OSBORNE A R,SERIO M,et al.Freak waves in random oceanic sea states[J].Physical Review Letters,2001,86(25):5831-5834 被引量:1
  • 6PELINOVSKY E N,SLUNYAEV A V,TALIPOVA T G,et al.Nonlinear parabolic equation and extreme waves on the sea surface[J].Radiophysics and Quantum Electronics,2003,46(7):451-463 被引量:1
  • 7BENJAMIN T B,FEIR J E.The disintegration of wave trains on deep water,Part 1.Theory[J].Journal of Fluid Mechanics,1967,27:417-430 被引量:1
  • 8DYSTHE K B.Note on a modification to the nonlinear Schrdinger equation for application to deep water waves[J].Proceedings of the Royal Society of London Series A,1979,369:105-114 被引量:1
  • 9LONGUET-HIGGINS M S.The instability of gravity waves of finite amplitude in deep water,II.Subharmonics[J].Proceedings of the Royal Society of London Series A,1978b,360:489-505 被引量:1
  • 10LO E,MEI C C.A numerical study of water-wave modulation based on a higher-order nonlinear Schrdinger equation[J].Journal of Fluid Mechanics,1985,150:395-416 被引量:1

同被引文献69

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部