期刊文献+

用BP神经网络模型评价养殖区水域的富营养化——以湖州地区为例 被引量:1

Eutrophication Assessment for Open Pond Using Artificial Neural Networks : A Case Study in Huzhou City
下载PDF
导出
摘要 根据养殖区水域富营养化程度主要影响因素和评价标准,用足够多的BP神经网络训练样本、检验样本和测试样本进行模拟学习,给出了区分养殖区富营养化程度的分界值,能够直观地进行不同等级富营养化程度的划分.所得到的神经网络模型具有较好的泛化能力和预测能力,减少了人为主观因素的影响,该模型有一定的客观性、通用性和实用性.实例分析表明,湖州地区养殖区外荡水域富营养化程度比较严重,处于富营养化和重富营养化状态. The level of eutrophication is related to many between the eutrophication degree and some influencing factors. Due to the non-linear relationship noted factors, a BP artificial neural network (ANN) is designed for the assessment of the eutrophication for the open water-area. The paper gives detail description on technical issues such as set data generation, training, verification, testing and boundaries. The trained ANN-based model demonstrates the good potential of generalization and is initial-value-invariant of the connection weights. The model is characterized in robustness, practicality, and superior fault-tolerance compared with other alternative methods such as gray-clustering analysis. Using the proposed model, eutrophication level is found to above average for the aquatic-breeding pond in Huzhou city.
出处 《宁波大学学报(理工版)》 CAS 2008年第1期30-33,共4页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省重大科技攻关招标项目(021103548)
关键词 人工神经网络 BP算法 富营养化评价 外荡水域 artificial neural networks error back-propagation algorithm eutrophication assessment open pond
  • 相关文献

参考文献7

  • 1金相灿等主编..中国湖泊富营养化[M].北京:中国环境科学出版社,1990:614.
  • 2张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994.. 被引量:60
  • 3Statsoft. Statistica Neural Networks[M]. Tulsa: Statsoft Inc, 1999. 被引量:1
  • 4Maier H R, Dandy G C. Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications[J]. Environmental Modeling and Software, 1999, 15(1):101-123. 被引量:1
  • 5Najjar Y M, Basheer l A, Hajmeer M N C. Computational neural networks for predictive microbiology: Methodology[J]. International Journal of Food Microbiology,1997, 34(1):27-49. 被引量:1
  • 6Anderson J A. An introduction to neural networks[M]. London: MIT Press, 1995. 被引量:1
  • 7Bishop C M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1995. 被引量:1

共引文献59

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部