期刊文献+

用神经网络BP算法预测钨合金材料抗拉强度 被引量:2

Prediction of tungsten tensile strength with artificial BP neural network method
下载PDF
导出
摘要 为减少实验量,降低实验成本,采用人工神经网络BP算法处理了钨合金材料的抗拉强度的实验数据,包括钨含量、变形量对材料抗拉强度的影响,给出了在不同钨含量条件下变形量对材料抗拉强度的关系曲线,和不同变形量条件下钨含量对材料抗拉强度的关系曲线.通过本文的分析可知,采用BP算法来处理钨合金的实验数据是可行的. In this paper, the tension experimental data of tungsten alloy were processed by BP Neural Network method, including the influences of the W content and deformation magnitude on the tensile strength. Thus two relation curves were drawn, which illustrated the relation between deformation magnitude and material tensile strength when W contents were changed, and the relation between W contents and material tensile strength in the case of different deformation magnitude. It is shown that BP Neural Network may be used to predict the trend of tensile strength of WHA with the changes of shapes and volume fractions of w - phase.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2006年第1期63-65,共3页 Materials Science and Technology
关键词 人工神经网络 BP算法 抗拉强度 变形量 钨含量 artificial neural network BP method tensile strength deformation magnitude volume fractions of w - phase
  • 相关文献

参考文献6

  • 1AMARI S I.A theory of adaptive pattern classification[J].IEEE Trans.On Electronic Computers.1967,EC-16:299-307. 被引量:1
  • 2BRYSON A,HO Y C.Applied Optimal Control[M].New York.1969. 被引量:1
  • 3WERBOS P.New tools for prediction and analysis in the behavioral science[D].Harvard University.1974. 被引量:1
  • 4Braun H ENZO-M.A hybrid approach for optimizing neural networks by evolution and learning[A].in Davider Y et al.Parallel problem solving from nature[C].Berlin.Springer-Verlag.1994:440 -451. 被引量:1
  • 5张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994.. 被引量:60
  • 6阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.

共引文献59

同被引文献10

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部