期刊文献+

基于小波包分解和FCM聚类的纹理图像分割方法 被引量:10

Texture image segmentation method based on wavelet packet transform and FCM clustring
下载PDF
导出
摘要 提出了一种新的图像特征提取中选取最优小波分解树的方法.塔式小波分解对信号解不够全面,而小波包全分解又引入庞大的计算量,因此小波分解最优树的选取尤为重要.结合模糊c均值(FCM,Fuzzy C-Mean)聚类,提出了一种能同时进行小波自适应分解和纹理特征分类的纹理图像分割方法,该方法将无监督聚类中的聚类有效性参数引入到自适应小波分解的判决中,能根据无监督聚类分割的需要,自适应地选取小波包分解的树形结构和分解层数.相对于小波包全分解,节省了大量的运算,并能取得良好的分割效果. A new method of optimal tree structure selection of wavelet transformation for image segmentation was presented. The standard pyramid-structure wavelet transform founded on the same recursive technique : only the low-pass outputs were used. It could not adjust the decomposition to accurate and efficient texture description. Although the wavelet packet transform provided a much more detailed analysis of the frequency content of a texture, it is often the case that areas which contain little or no frequency information are recursively decomposed. So the selection of optimal wavelet basis for texture characterization is very important. By introducing the validity measure for fuzzy clustering to the decision of wavelet decomposition structure, the presented algorithm simultaneously performs the adaptive wavelet decomposition and the texture feature classification, moreover it adaptively chooses the wavelet decomposition structure and depth. Compared with the wavelet packet decomposition, the algorithm reduces the computational burden, while obtains satisfactory segmentation results.
作者 吴央 袁运能
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第5期572-575,共4页 Journal of Beijing University of Aeronautics and Astronautics
关键词 图像分割 小波变换 模糊C均值聚类 最优小波基 image segmentation wavelet transform fuzzy c-means clustering optimal wavelet basis
  • 相关文献

参考文献8

  • 1Stephane G, Mallat A. Theory for muhiresolution signal decomposition: the wavelet representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989,6:674 - 693 被引量:1
  • 2Brady K, Jermyn I H, Zerubia J. Texture analysis: anadaptive probabilistic approach [ C ]//Proc IEEE ICIP. Barcelona, Spain:IEEE, 2003 : 1045 - 1048 被引量:1
  • 3Herley Cormac, Xiong Zixiang, Ramchandran Kannan, et al. Joint space frequency segmentation using balanced wavelet packet trees for least-cost image representation [J].IEEE Trans on Image Processing, 1997,6(9) :1213 - 1229 被引量:1
  • 4Soo Chang Kim. Tae jin kang texture classification and segmentation using incomplete tree structured wavelet packet frame and gaussian mixture model[ C ]// IEEE International Workshop on Imaging Systems and Techniques. Niagara Falls: IEEE,2005,5: 46 - 51 被引量:1
  • 5Rahul Shukla, Pier Luigi Dragotti, Minh N Do,et al. Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images[ J]. IEEE Trans on Image Processing, 2005,3:343- 359 被引量:1
  • 6Unser M. Texture classification and segmentation using wavelet frames[J].IEEE Transactions On Signal Processing, 1995,4 (11) :1549 - 1560 被引量:1
  • 7吴高洪,章毓晋,林行刚.利用小波变换和特征加权进行纹理分割[J].中国图象图形学报(A辑),2001,6(4):333-337. 被引量:55
  • 8Xie X L, Beni G. A validity measure for fuzzy clustering[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1991, 13:841 -847 被引量:1

二级参考文献5

  • 1Salari E,Ling Z.Texture segmentation using hierarchical wavelet decomposition[].Pattern Recognition.1995 被引量:1
  • 2Daubechies I.Orthogonal bases of compactly supported wavelets[].Communications in Pure Applied Mathematics.1988 被引量:1
  • 3Brodatz P.Textures: A photographic album for artists and designer[]..1966 被引量:1
  • 4Laws K I.Rapid texture identification[].Proceedings of SPIE the International Society for Optical Engineering.1980 被引量:1
  • 5Lu C S,Chung P C,Chen C F.Unsupervised texture segmentation via wavelet transform[].Pattern Recognition.1997 被引量:1

共引文献54

同被引文献105

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部