期刊文献+

Wick型随机WBK浅水波方程的白噪声泛函解 被引量:2

White Noise Functional Solutions of the Wick-type Stochastic WBK Equation
下载PDF
导出
摘要 WBK浅水波方程是数学物理中的重要方程之一,对其研究有重要意义。经典方法都是在确定状态下研究波方程的性质和精确求解。随机分析和白噪声理论的建立和发展为波方程的研究提供了新的内容、方法和工具,因此,研究随机状态下波方程就成为可能。本文就是研究随机状态下WBK浅水波方程的精确求解问题:在Kondratiev分布空间(S)-1中,利用Hermite变换和齐次平衡法研究Wick-型随机WBK浅水波方程的精确求解,给出其白噪声泛函解,并给出了该方程在系数F(t)取不同白噪声泛函时的几个例子。 It is of significance to research the WBK equation which is one of important wave equations in mathematical physics. Wave equations are usually studied in no-random environments. It is possible to research stochastic wave equations by relying on the development of stochastic analysis and white noise analysis. In this paper, the white noise functional solutions of Wick-type stochastic WBK equation are derived by using the Hermite transformation in Kondratiev distribution space (S) - 1 and the homogenous balance principle. At the same time, some examples are given for different white noise functionals.
作者 陈彬
出处 《工程数学学报》 CSCD 北大核心 2008年第1期173-176,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671168) 江苏省自然科学基金(BK2006032) 江苏省高校自然科学基金(05KJD110220) 徐州师范大学自然科学基金
关键词 Wick型随机WBK方程 HERMITE变换 齐次平衡法 白噪声泛函解 Wick-type stochastic WBK equation hermite transformation homogenous balance principle white noise functional solutions
  • 相关文献

参考文献9

  • 1那仁满都拉,陈巴特尔.Whitham-Broer-Kaup浅水波方程新的多孤子解[J].力学与实践,2001,23(1):33-35. 被引量:6
  • 2石玉仁,吕克璞,段文山,杨红娟.变系数WBK浅水波方程的多孤立波解[J].西北师范大学学报(自然科学版),2004,40(3):22-25. 被引量:3
  • 3Xie Y C. Exact solutions for stochastic KdV equations[J]. Physics Letters A, 2003, 310(2-3): 161-167. 被引量:1
  • 4Xie Y C. Exact solutions for stochastic mKdV equations[J]. Chaos, Solitons &: Fractals, 2004, 19(3): 509-513. 被引量:1
  • 5Xie Y C. An auto-Backlund transformation and exact solutions for Wick-type stochastic generalized KdV equations[J]. J Phys A: Math Gen, 2004, 37(19): 5229-5236. 被引量:1
  • 6Chen B, Xie Y C. Exact solutions for Wick-type stochastic coupled Kadomtsev-Petviashvili equations[J]. J Phys A: Math Gen, 2005, 38(4): 815-822. 被引量:1
  • 7Xie Y C. Exact solutions for the Wick-type stochastic 2-dimensional KdV equations with dissipation[J]. Physics Letters A, 2005, 340(5-6): 403-410. 被引量:1
  • 8Chen B, Xie Y C. An auto-Backlund transformation and exact solutions of stochastic Wick-type Sawada- Kotera equations[J]. Chaos, Solitons &: Fractals, 2005, 23(1): 281-287. 被引量:1
  • 9Wang M L. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A, 1996, 213(5-6): 279-287. 被引量:1

二级参考文献9

共引文献7

同被引文献12

  • 1Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Phys Lett A, 1995,199 (3/4) :169. 被引量:1
  • 2Otwinowski M,Paul R,Laidlaw W G. Exact traveling wave solutions of a class of nonlinear diffusion equations by reduction to a quadrature[J]. Phys Lett A, 1988,128(9) :483. 被引量:1
  • 3Zhou Y B,Wang M L,Wang Y M. Periodic wave solutions to a coupled KdV equations with variable coefficients[J]. Phys Lett A,2003,308(1) :31. 被引量:1
  • 4Zhang Huiqun. New exact travelling wave solutions of nonlinear evolution equation using a sub-equation[J]. Chaos, Solitons & Fractals,2009,39(2):873. 被引量:1
  • 5Xie Yingchao. Exact solutions for stochastic KdV equations[J]. Phys Lett A,2003,310(2/3) : 161. 被引量:1
  • 6Chen Bin, Xie Yingchao. White noise functional solutions of Wick-type stochastic generalized Hirota-Satsuma coupled KdV equations[J]. Comput Appl Math,2006,197(2) : 345. 被引量:1
  • 7Darwish A A,Ramady A. Exact solutions of some nonlinear systems of partial differential equations[J]. Chaos,Solitons & Fractals,2009,40(2) : 745. 被引量:1
  • 8Benth F E,Gjerde J. A remark on the equivalence between Poisson and Gaussian stochastic partial differential equations [J]. Potential Anal .. 1998 . 8(2) : 179. 被引量:1
  • 9黄文华,刘宇陆.Maccari系统的椭圆函数传播波[J].物理学报,2007,56(9):5026-5032. 被引量:1
  • 10孙信秀,卢亦平,刘海洋.Wick型随机广义Burgers-Fisher方程的精确解(英文)[J].徐州师范大学学报(自然科学版),2009,27(2):50-54. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部