期刊文献+

基于分块潜在语义的场景分类方法 被引量:7

Scene classification based on block latent semantic
下载PDF
导出
摘要 提出了一种基于分块潜在语义的场景分类方法。该方法首先对图像进行均匀分块并使用分块内视觉词汇的出现频率来描述每一个分块,然后利用概率潜在语义分析(PLSA)方法从图像的分块集合中发现潜在语义模型,最后利用该模型提取出潜在语义在图像分块中的出现情况来进行场景分类。在13类场景图像上的实验表明,与其他方法相比,该方法具有更高的分类准确率。 A novel scene classification method was presented based on block latent semantic. The image blocks were first extracted on a regular grid and the visual words in blocks were used to describe every block, and then block latent semantic models were achieved by using Probabilistic Latent Semantic Analysis ( PLSA). The latent semantic model was used to find the latent semantic in image block and their spatial distribute in image. Finally, this feature was used to construct a SVM model to classify scene. Experimental results show that this method has satisfactory classification performances on a large set of 13 categories of complex scenes.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1537-1539,1542,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60473117) 国家863计划项目(2006AA01Z319)
关键词 场景分类 分块潜在语义 视觉词汇 局部不变特征 概率潜在语义分析 scene classification block latent semantic visual word local invariant feature Probabilistic Latent Semantic Analysis (PLSA)
  • 相关文献

参考文献11

  • 1VAILAYA A, FIGUEIREDO A, JAIN A, et al. Image classification for content-based indexing [ J]. IEEE Transactions on Image Processing, 2001, 10(1) : 117 - 129. 被引量:1
  • 2CHANG E, GOH K, SYCHAY G, et al. CBSA: Content-based soft annotation for muhimodal image retrieval using Bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38. 被引量:1
  • 3SZUMMER M, PICARD R W. Indoor-outdoor image classification [C]// IEEE International Workshop on Content-based Access of Image and Video Databases in conjunction with ICCV'98. Washington: IEEE Computer Society, 1998: 42-50. 被引量:1
  • 4OLIVA A, TORRALBA A. Modeling the shape of the scene: A holistic representation of the spatial envelope [J]. International Journal of Computer Vision, 2001, 42(3) : 145 - 175. 被引量:1
  • 5VOGEL J, SCHIELE B. Natural scene retrieval based on a semantic modeling step [ C]// International Conference on Image and Video Retrieval, LNCS 3115. Berlin: Springer-Verlag, 2004:207 - 215. 被引量:1
  • 6LI FEI-FEI, PERONA P. A Bayesian hierarchical model for learning natural scene categories [ C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2005, 524 -531. 被引量:1
  • 7QUELHAS P, MONAY F, ODOBEZ J-M, et al. Modeling scenes with local descriptors and latent aspects [ C ]// Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05). Washington: IEEE Computer Society, 2005: 883- 890. 被引量:1
  • 8BOSCH A, ZISSERMAN A, MUNOZ X. Scene classification via pLSA [ C]// European Conference on Computer Vision, LNCS 3954. Berlin: Springer-Verlag, 2006:517-530. 被引量:1
  • 9HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis [ J]. Machine Learning, 2001, 41 (2) : 177 - 196. 被引量:1
  • 10BLEI D, NG A, JORDAN M. Latent dirichlet allocation [ J/OL]. Journal of Machine Learning Research, 2003, 3(7): 993 -1022. 被引量:1

同被引文献61

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部