期刊文献+

基于潜在语义模型的SVM入侵检测研究

Research on support vector machine for intrusion detection based on latent semantic model
下载PDF
导出
摘要 论文提出了一种基于潜在语义索引(LSI)和支持向量机(SVM)的异常入侵检测方法。选取PARPA’98BSM数据集作为训练数据和测试数据,通过实验比较和分析表明:基于LSI和SVM方法的入侵检测系统具有较高的检测率和较低的虚警率,且能大大减低计算的复杂性,是一种有效的异常识别和检测方法。 This paper proposes a new Support Vector Machine (SVM) for anomaly intrusion detection method based on Latent Semantic Indexing(LSI).In this paper,the PARPA'98 data sets are chosen as training and testing data sets,experiments show that our method has a higher detection rate and a lower false positive rate,and can greatly reduce the computation complexity.It is an effective anomaly identifying and detecting method.
作者 杨清 李方敏
出处 《计算机工程与应用》 CSCD 北大核心 2007年第5期143-145,152,共4页 Computer Engineering and Applications
基金 湖南省杰出青年基金项目(the Science Fund of Hunan Province for Distinguished Young Scholar China under Grant No.03JJY1012)
关键词 入侵检测 支持向量机 潜在语义模型 intrusion detection Support Vector Machine latent semantic model
  • 相关文献

参考文献12

  • 1Rawat S,Pujari A K,Gulati V P.On the use of singular value decomposition for a fast Intrusion detection system.Views on Designing Complex Architectures,2004. 被引量:1
  • 2Liao Yi-hua,Vemuri V R.Using text categorization techniques for intrusion detection[C]//Proceedings of the 11th USENIX Security Symposium,2002-08:51-59. 被引量:1
  • 3Liao Yi-hua,Vemuri V R.Use of K-nearest neighbor classifier for intrusion detection[J].Computers & Security,2002,21(5):439-448. 被引量:1
  • 4http://www.ll.mit.edu/IST/ideval/data/data_index.html. 被引量:1
  • 5Denning D E.An intrusion-detection model[C]//Proceedings of the 1986 IEEE Symposium on Security and Privacy.IEEE Computer Society Press,1990:118-133. 被引量:1
  • 6Ghosh A K,Schwartzbard A,Shatz A M.Learning program behavior profiles for intrusion detection[C]//Proceedings of 1st USENIX Workshop on Intrusion Detection and Network Monitoring,1999. 被引量:1
  • 7Huang Yan.Support Vector Machines for text categorization based on latent semantic indexing[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining,2004. 被引量:1
  • 8王天江,叶卫国,卢正鼎,李永平.LSI和kNN相结合的文本分类模型研究[J].华中科技大学学报(自然科学版),2004,32(4):59-60. 被引量:3
  • 9Husbands P,Simon H,Ding C.On the use of the singular value decomposition for text Retrieval[EB/OL].http://www.lbl.gov/CS/html/reports.html#2000. 被引量:1
  • 10饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135

二级参考文献11

  • 1[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212. 被引量:1
  • 2[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109. 被引量:1
  • 3[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132. 被引量:1
  • 4[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995. 被引量:1
  • 5[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143. 被引量:1
  • 6[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145. 被引量:1
  • 7Berry M W, Dumais S T, O'Brien G W. Using linear algebra for intelligent information retrieval. SIAM Review, 1995, 37(4): 573-595. 被引量:1
  • 8Dumais S T, Fumas G W, Landauer T K, et al. Using latent semantic analysis to improve information retrieval. In: ACM. Proceedings of CHI'88: Conference on Human Factors in Computing. New York: ACM, 1988. 281-285. 被引量:1
  • 9Dumais S. Improving the retrieval of information from external sources. Behavior Research Methods, Instruments and Computers, 1991, 23(2) : 229-236. 被引量:1
  • 10Yeung D S, Wang Xizhao. Improving performance of similarity-based clustering by feature weight learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 556-561. 被引量:1

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部