期刊文献+

求解流量监测点最优部署问题的混合遗传算法

Hybrid Genetic Algorithm for Optimal Deployment of Flow Monitors
下载PDF
导出
摘要 针对网络流量监测点最优部署(Optimal Deployment of Flow Monitors,ODFM)问题,提出了ODFM问题的通用模型。将遗传算法和模拟退火算法相结合,给出了求解ODFM问题的遗传模拟退火算法(GA-SA)。通过仿真实验,将GA-SA和标准遗传算法(Standard Genetic Algorithm,SGA)以及Suh等人提出的两步近似算法(Two-Stage Approximation Algorithm,TSAA)的求解性能进行了比较。实验结果表明,与SGA和TSAA相比,GA-SA可获得15%以上的求解性能提升。 To address the problem of Optimal Deployment of Flow Monitors (ODFM) in large IP networks, a universal model of the ODFM problem was proposed. Meanwhile, a genetic simulated annealing algorithm (GA-SA) was given to solve it, The performance of GA-SA was compared with both Standard Genetic Algorithm (SGA) and the Two-Stage Approximation Algorithm (TSAA) introduced by Suh, et al, through simulation. The experimental results show that GA-SA outperforms both SGA and TSAA by up to 15% in terms of qualitv of solutions.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第9期2475-2478,2482,共5页 Journal of System Simulation
基金 国家863计划项目:大规模接入汇聚路由器系统性能及关键技术研究(2004AA103130)
关键词 流量监测 优化部署 混合遗传算法 模拟退火 flow monitoring optimal deployment hybrid genetic algorithm simulated annealing
  • 相关文献

参考文献13

  • 1Hui Zang, Antonio Nucci. Optimal NetFlow Deployment in IP Networks [C]//19th Imemational Teletraffic Congress (ITC), Beijing, China, August 2005. USA: IEEE Press, 2005: 254-263. 被引量:1
  • 2Kyoungwon Sub, Yang Guo. Locating Network monitors: complexity, heuristics, and coverage [C]//IEEE INFOCOM, Miami, USA, March 2005. USA: IEEE Press, 2005: 1290-1301. 被引量:1
  • 3Claude Chaudel, Eric Fleury. Optimal Positioning of Active and Passive Monitoring Devices [C]//CoNEXT 2005, Toulouse, France, October 2005. USA: IEEE Press, 2005: 794-807. 被引量:1
  • 4Chengchen Hu, Zhen Liu. On the Deployment Strategy of Distributed Network Security Sensors [C]//IEEE ICON, Singapore 2005. USA:IEEE Press, 2005, 被引量:1
  • 5Gion Reto Cantient, Gianluca Iannaccone. Reformulating the Monitor Placement Problem: Optimal Network-Wide Sampling [C]// IEEE CISS'06, Princeton NJ. USA: IEEE Press, March 2006: 931-944. 被引量:1
  • 6Chengchen Hu, Bin Liu. Optimal Deployment of Distributed Passive Measurement Monitors [C]//IEEE ICC, Istanbul, Turkey, 2006. USA: IEEE Press, June 2006. 被引量:1
  • 7丰建荣,刘志河,刘正和.混合整数规划问题遗传算法的研究及仿真实现[J].系统仿真学报,2004,16(4):845-848. 被引量:32
  • 8周明,孙树栋编著..遗传算法原理及应用[M].北京:国防工业出版社,1999:203.
  • 9雷英杰 ... ..MATLAB遗传算法工具箱及应用[M],2005.
  • 10玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:396

二级参考文献7

  • 1Romeo M Marian, Lee H S Luong, Kazem Abhary. Assembly sequence planning and optimization using genetic algorithms[J]. Applied Soft Computing , , 2003, 2/3: 223-253. 被引量:1
  • 2Shana Shiang-Fong Smith. Using multiple genetic operators to reduce premature convergence in genetic assembly planning[J]. Computers in Industry, 2004, 54: 35-49. 被引量:1
  • 3Greg C Smitha, Shana S-F Smith . An enhanced genetic algorithm for automated assembly planning[J]. Robotics and Computer Integrated Manufacturing , 2002, 18: 355-364. 被引量:1
  • 4Ruey-Shun Chen, Kun-Yung Lu, Shien-Chiang Yu. A hybrid genetic algorithm approach on multi-objective of assembly planning problem[J]. Engineering Applications of Artificial Intelligence, 15, 2002: 447-457. 被引量:1
  • 5Chul Ju Hyun, Yeongho Kim and Yeo Keun Kim. A genetic algorithm for multiple objective sequencing problems for multiple model assembly lines[J]. Computers Ops Res, 1998, 25(7/8): 675-690. 被引量:1
  • 6张伟军,贾传圣,杨汝清.基于时延Petri网模型的机器人装配任务规划[J].中国机械工程,2002,13(14):1219-1222. 被引量:10
  • 7高尚.基于MATLAB遗传算法优化工具箱的优化计算[J].微型电脑应用,2002,18(8):52-54. 被引量:33

共引文献427

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部