摘要
In this paper, the Sr3Y2 (BO3)4 :Eu^3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613 nm corresponding to the electric dipole 5^Do-7^F2 transition of Eu^3+ under 365 nm excitation, this is because Eu^3+ substituted for Y^3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2(BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254 nm, 365 nm and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the red emission of Sr3Y2(BO3)4 :Eu^3+ was measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4 :Eu^3+ phosphor is (0.640, 0.355) at 15 mol% Eu^3+.
In this paper, the Sr3Y2 (BO3)4 :Eu^3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613 nm corresponding to the electric dipole 5^Do-7^F2 transition of Eu^3+ under 365 nm excitation, this is because Eu^3+ substituted for Y^3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2(BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254 nm, 365 nm and 400 nm) and blue (470 nm) light. The effect of Eu^3+ concentration on the red emission of Sr3Y2(BO3)4 :Eu^3+ was measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4 :Eu^3+ phosphor is (0.640, 0.355) at 15 mol% Eu^3+.
基金
supported by Hebei Provincial Technology Development Foundation of China (Grant No 51215103b)
Science Foundation of Hebei University, China (Grant No 2006Q06)