摘要
分析了滚动轴承运动时的非线性轴承力,建立了考虑非线性轴承力的滚动轴承-Jeffcott刚性转子系统的动力学方程,并用数值方法对其求解。利用分岔图和poincar映射图,分析了滚动轴承-Jeffcott转子系统的非线性动力响应行为。结果表明:转子系统具有丰富的周期和非周期(拟周期或混沌)响应形式,转子系统进入混沌的主要途径是倍周期分岔,合理的选择转子系统的结构和工作参数,如转速,游隙和阻尼,可降低系统的不稳定性。
With nonlinear bearing force considered, the governing differential equations of motions of a rolling bearing-Jeffcott system was established and solved by numerical method. The nonlinear dynamic response of the system was analyzed by means of bifurcation diagrams and poincaré maps. Simulation results show that abundant kinds of periodic and non-periodic (quasi-periodic and chaotic) responses exist in the system. The main route to chaos is doubling bifurcation. Instability of the system can be reduced by adopting reasonable structural parameters and operational parameters, such as rotating speed, radial internal clearance and damping in the system.
出处
《振动与冲击》
EI
CSCD
北大核心
2008年第5期56-59,共4页
Journal of Vibration and Shock
基金
国家“十一五”科技攻关项目(JPPT-115-189)
国家863项目(2006AA04Z402)资助