期刊文献+

Application of wavelet package filtering in the de-noising of fiber optic gyroscopes 被引量:2

小波包变换滤波在光纤陀螺信号降噪处理中的应用(英文)
下载PDF
导出
摘要 To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing. 为了减小光纤陀螺仪输出信号中的漂移误差,对小波变换和小波包变换进行了理论分析和比较,建立了光纤陀螺仪输出信号的数学模型,分析了其输出信号的误差特性,在详细分析比较硬阈值和软阈值小波滤波的基础上,提出了采用半软阈值作为滤波阈值.并在实验室环境下分别对光纤陀螺静态和动态输出数据进行了半软阈值小波包滤波实验.对光纤陀螺实时测量信号的实验结果表明:采用半软阈值小波包滤波方法对光纤陀螺仪输出数据进行处理,静态和动态输出信号误差均方差可以从5(°) /h减少到1(°) /h,有效地消除了光纤陀螺仪中白噪声和分形噪声的影响.该方法比小波滤波方法更加有效地消除了光纤陀螺漂移误差的影响,且能够满足光纤陀螺仪输出高精度和实时处理的要求.
作者 王其 徐晓苏
出处 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期46-49,共4页 东南大学学报(英文版)
基金 Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503) the National De-fense Basic Research Program of China(973 Program)(No.973-61334) the National Natural Science Foundation of China(No.50575042) Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
关键词 wavelet package analysis signal processing fiber optic gyro threshold filtering 小波包变换 信号处理 光纤陀螺仪 阈值滤波
  • 相关文献

参考文献10

  • 1Ji Xunsheng,,Wang Shourong,Xu Yishen.Application of fast wavelet transformation in signal processing of MEMS gyro- scope[].Journal of Southeast University:English Edition.2006 被引量:1
  • 2Chen Xiyuan.Modeling random gyro drift by time series neu- ral networks and by traditional method[].IEEE Interna- tional Conference on Neural Networks and Signal Process- ing.2003 被引量:1
  • 3Rajagopal K,Singh B,Singh B,et al.Novel methods of tem- perature compensationfor permanent magnet sensors and ac- tuators[].IEEE Transactions on Magnetics.2001 被引量:1
  • 4Han Junlian,Ge Shengmin,Shen Yi,et al.Modeling and sim- ulation of digital closed-loop fiber optic gyroscope[].Theth World Congress on Intelligent Control and Automation.2006 被引量:1
  • 5Gao Yukai,Deng Zhenglong.Extraction of FOG signal from fractal noise[].IEEE International Conference on Neural Networks & Signal Processing.2003 被引量:1
  • 6Sun Feng,Luo Chao,Gao Wei,et al.Research on modeling and compensation method of fiber optic gyro random error[].IEEE International Conference on Mechatronics & Au- tomation.2005 被引量:1
  • 7Wang Xinlong,Jin Zhenshan,Shen Gongxun,et al.Using a neural network learning algorithm suitable for the best esti- mation of nonlinear system[].Theth World Congress on Intelligent Control and Automation.2002 被引量:1
  • 8El-Sheimy Naser,,Chiang Kai-Wei,Noureldin Aboelmagd.The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments[].IEEE Transactions on Instrumentation and Measure- ment.2006 被引量:1
  • 9Shu Xiaowu,Liu Cheng.The research of digital close-loop depolarized FOG[].Therd World Congress on Intelli- gent Control and Automation.2000 被引量:1
  • 10Nugroho Anto Satriyo,Kuroyannagi Susumu,Iwata Akira.FOG forecasting using self growing neural network Comb- NET-Ⅱ?—a solution for imbalanced training sets of problem[].IEEE-INNS-ENNS International Joint Conference on Neural Networks.2000 被引量:1

同被引文献16

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部