期刊文献+

基于提升小波的光纤陀螺分形噪声滤除方法 被引量:14

De-Noising Fractional Noise in Fiber Optic Gyroscopes Based on Lifting Wavelet
原文传递
导出
摘要 光纤陀螺(FOG)随机噪声中包含了白噪声和具有长程相关性、自相似性及1/f^r类型谱密度特点的一种非平稳随机噪声——1/f^r类分形噪声。采用传统的方法很难去除该类噪声。由于小波分析的多分辨分析特性,使之成为研究分形噪声的有力工具。提出一种新的基于提升小波的自适应阈值选取滤波方法对光纤陀螺的输出信号进行阈值滤波,进而提高光纤陀螺的精度,算法包括提升小波分解、滤波参数估计及自适应软阈值滤波。对多组实测数据进行仿真实验,将传统小波固定阈值滤波方法与新方法进行比较,实验结果验证了新方法的有效性。 The output of fiber optic gyroscopes (FOG) involves Gaussian white noise and fractional noise which is difficult to eliminate by traditional methods because of the non-stationary, long-term correlation, self-similarity characteristics. On account of the characteristics of the wavelet multi-resolution analysis, wavelet analysis has become a powerful tool to study fractal noises. This paper introduces an effective technique for the de-noising of FOG corrupted by non-stationary noises. The proposed method is based on a second generation wavelet transform and level-dependent threshold estimator. The whole algorithm consists of the de-composition based on lifting wavelet, parameter estimation, and level-dependent soft threshold de-noising. The de-noising method based on traditional universal thresholding wavelet is also investigated to provide a comparison with the new method. Experimental results prove that the proposed method based on level-dependent lifting wavelet outperforms the traditional wavelet de-noising method.
出处 《中国激光》 EI CAS CSCD 北大核心 2009年第3期625-629,共5页 Chinese Journal of Lasers
基金 航天科技创新项目基金资助课题
关键词 光纤光学 提升小波 分形噪声 光纤陀螺 最大似然估计 软阈值滤波 Block codes Fiber optics Fibers Gyroscopes Optical materials Optoelectronic devices Parameter estimation Security of data Turbo codes Wavelet transforms White noise
  • 相关文献

参考文献15

  • 1[1]V.Vali,R.W.Shorthill.Fiber ring interferometer[J].Appl.Opt.,1976,1(15):1099~1100 被引量:1
  • 2[2]R.Usui,A.Ohno.Recent progress of fiber optic gyroscopes and applications at JAE[C].Optical Fiber Sensors Conference Technical Digest.UsA:OFS,2002,11~14 被引量:1
  • 3[3]A.Cordova,R.Patterson,J.Rahn.Progress in navigation grade IFOG performance[C].SPIE.1996.2837:207~217 被引量:1
  • 4[7]Jian Mi,Chunxi Zhang,Zheng Li et al..Bias phase and light power dependence of the random walk coefficient of fiber optic gyroscope[J].Chin.Opt.Lett.,2006,4(7):379~381 被引量:1
  • 5[8]C.X.Shi.H.Kajioka.Configuration to double I-FOG output power:Experimental investigation of noise performance and temperature effect[J].IEEE Photon.Technol.Lett.,1996,8(7):924~926 被引量:1
  • 6[9]D.Donoho.I.Johnstone.Ideal spatial adaptation by wavelet shrinkage[J].Biometrika,1994,81:424~455 被引量:1
  • 7[10]S.Mallat.A Wavelet Tour of Signal Processing[M].San Diego:Academic Press.1998 被引量:1
  • 8[11]G.W.Wornell.A.V.Oppenleim.Estimation of fractal from noisy measurements using wavelet[J].IEEE Trans Signal Processing,1992,40(3):611~623 被引量:1
  • 9[12]I.Daubechies,W Sweldens.Factoring wavelet transfonTIS into lifting steps[J].J Fourier Annal Appl.,1998.4(3):245~267 被引量:1
  • 10[13]W.Sweldens.The Lifting scheme:A construction of second generation wavelets[J].Journal of Appl.and Comput Harmonic Analysis,1996,3(2):186~200 被引量:1

同被引文献129

引证文献14

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部