期刊文献+

基于差分粒子群优化算法的多机PSS参数优化

Multi-machine PSS Parameter Optimization Based on Differential Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 提出了一种新的进化计算方法——差分进化粒子群优化算法(DEPSO)进行多机电力系统稳定器(PSS)的参数优化。该方法以系统正常运行方式下的最小机电振荡模式阻尼比为目标函数,将PSS的参数优化问题等效为非线性、非解析、非突性的连续实域空间的函数优化问题。基于传统的差分进化策略,引入种群中的最优个体信息和方向信息,提出了一种全新的差分进化策略。仿真结果表明,该算法搜索空间广,收敛速度快,优化效果好。 A new evolution computation method-Differential Evolution Based Particle Swarm Optimization(DEBPSO) used to optimize the parameters of multi-machine Power System Stabilizers (PSSs), is presented in this paper. By this approach, with an objective function for the minimal damp ratio of all electromechanical modes under conventional system operating condition, the parameter optimization of PSS is referred as a matter of nonlinear, non differential and non convex function optimization over a continuous real-world space. A new differential evolution strategy considering the optimal individual and directional information, based on the conventional differential evolution strategy, is proposed in order to accelerate the convergence of this algorithm. The simulation in 4-machine system indicates that the proposed algorithm has extensive search space, faster convergence speed and better optimization effect in comparison with the conventional optimization algorithm.
出处 《水电能源科学》 2008年第2期156-159,204,共5页 Water Resources and Power
基金 国家自然科学基金重大资助项目(90612018) 上海电力公司重大基金资助项目(F020303)
关键词 差分进化粒子群优化 电力系统稳定器 多机电力系统 参数优化 DEBPSO power system stabilizer multi-machine power system parameter optimization
  • 相关文献

参考文献16

  • 1朱方 方思立.电力系统稳定器的原理及其应用[M].北京:中国电力出版社,1996.. 被引量:5
  • 2倪以信等著..动态电力系统的理论和分析[M].北京:清华大学出版社,2002:396.
  • 3韩石成.小浪底水电厂电力系统稳定器无功反调现象及分析[J].水电能源科学,2007,25(2):116-118. 被引量:7
  • 4Abido M A. Optimal Design of Power-system Stabilizers Using Particle Swarm Optimization[J]. IEEE Trans. on Power Systems, 2002,17 (3) :406-413 被引量:1
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization [A]. Proceedings of the IEEE International Conference on Neural Networks[C]. Piscataway,NJ:IEEE service center, 1995 : 1 942-1 948 被引量:1
  • 6Shi Y, Eberhart R. Parameter Selection in Particle Swarm Optimization[A]. Proceedings of the 7th Annual Conference on Evolutionary Programming [C]. Washington DC, 1998 : 591-600 被引量:1
  • 7Abid M A, Abdel-Magid Y L. Robust Design of Multimachine Power System Stabilisers Using Tabu Search Algorithm [J]. IEEE Proc-Gener. Transm. Distrib, 2000,147 (6): 387-394 被引量:1
  • 8Abido M A. Robust Design of Multimachine Power System Stabilizers Using Simulated Annealing[J]. IEEE Transactions on Energy Conversion, 2000, 15 (3) :297-304 被引量:1
  • 9方卫华.人工神经网络模型用于水电能源科学的问题探讨[J].水电能源科学,2004,22(3):71-74. 被引量:9
  • 10Omran M G H, Engelbrecht A P,Salman A. Differential Evolution Based Particle Swarm Optimization [A]. Proceedings of the 2007 IEEE Swarm Intelligence Symposium[C]. Hawaii: IEEE computational Intelligence Society,2007 : 112-119 被引量:1

二级参考文献28

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部