期刊文献+

大型回转体超声检测中缺陷类型的在线识别 被引量:6

Online Classification on Large-Scale Rotors Defect in Ultrasonic Testing
下载PDF
导出
摘要 大型回转体超声探伤中由于需要实时处理大量数据,且全面的缺陷特征信息难以获得,导致缺陷类别在线识别困难.对多个超声波探头获取的同一缺陷的互补特征信息,利用BPNN的并行计算能力分别进行缺陷类别的局部决策,再采用D-S理论实现缺陷类型的融合识别.为使神经网络更适合于在线数据处理和缺陷识别,对标准BP算法进行了改进,在不增加计算量和存储量的前提下,避免了网络陷入局部最小,提高了网络的收敛速度.将改进后的BP网络的非线性建模能力与D-S证据理论的不确定性推理能力进行有机结合,使论据理论的支持度的分配避免了主观性,从而提高了决策的确定度和识别的可靠性.采用已知缺陷的回转体工件进行在线融合识别机制进行测试,其结果说明了该方法的可行性及有效性. During ultrasonic testing on large rotors, it is difficulty to classify the defects online due to the requirement of instant processing capability on huge amount of data and the incomplete information of the defects. Multi-ultrasonic sensors are used for acquisition of the complementary defect information on rotors in this paper. For the parallel computing performance of BPNN (Backward Propagation Neural Network), it is adopted to realize local classification of the defects with the information form the sensors. The results of local decisions are combined with D-S theory ( Dempster-Shafter Evidence Theory) to classify the defects. To processing data and classify defects online, a BP algorithm is modified to avoid it from trapping into local minimum and to accelerate the convergence rate, on the premise of without increasing computational complexity and memory quantity. Because the nonlinearity modeling ability of BPNN is combined with the indeterminacy reasoning capability of the D-S theory, the distribution of support degree is abstained from subjectivity, thus the validity of decision-making progress and the reliability of defect classification are increased. The online fusion and identification mechanism is tested with known defects, and the results have proved the feasibility and the validity of the proposed method.
出处 《应用基础与工程科学学报》 EI CSCD 2008年第2期247-254,共8页 Journal of Basic Science and Engineering
基金 四川省国际科技合作与交流研究计划项目资助(2007H12-017)
关键词 缺陷类别 在线 特征提取 改进算法 数据融合 defect classifications online feature extraction modified algorithm data fusion
  • 相关文献

参考文献11

  • 1Boston J B. A Signal detection system based on dempster-shafer theory and comparison to fuzzy detection [J]. IEEE Trans. on Systems, Man, and Cybernetics-Part C : Applications and Reviews,2000,30 ( 1 ) :45 -51 被引量:1
  • 2Dennis M Buede. Shafer-dempster and bayesian reasoning:A response to "shafer-dempster reasoning with applications to multisensor target identification systems" [ J ]. IEEE Transaction on Systems, Man and Cybernetics, 1998,6 ( 18 ) : 1009-1011 被引量:1
  • 3刚铁,吴林.超声检测中的多源信息融合技术与缺陷识别[J].机械工程学报,1999,35(1):11-14. 被引量:5
  • 4张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994.. 被引量:60
  • 5滕召胜.智能检测系统与数据融合[M].北京:机械工业出版社,2002.34-105. 被引量:5
  • 6Maximilient E M,Singh M P. A framework and ontology for dynamic web services selection[J]. Intemet Computing, 2004,8(5) :84-93 被引量:1
  • 7Patios A G,Fernandez B,Atiyz A F, et al. An accelerated learning algorithm for multilayer perception network[J]. IEEE Trans. On NN,1994,5(3) :493-497 被引量:1
  • 8Zak M. Terminal attractors for addressable memory in neural networks[J]. Physics Lett A, 1998,133 (1/2) :18-22 被引量:1
  • 9Sylvie Le H' egarat-Masele, IsabeUe Bloch,idal-Madjar D. Application of dempster-shafer evidence theory to supervised classification in muhisource remote sensing[ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35 (4) : 1018-1031 被引量:1
  • 10刘福顺,汤明编著..无损检测基础[M].北京:北京航空航天大学出版社,2002:167.

二级参考文献5

共引文献68

同被引文献65

引证文献6

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部