期刊文献+

基于IGS和SVM的烧结返矿量智能集成预测模型 被引量:4

Intelligent integrated prediction model for quantity of sintering return mines based on IGS and SVM
下载PDF
导出
摘要 针对烧结返矿量难以进行有效预测的问题,提出一种智能集成预测模型.首先利用改进灰色系统和支持向量机两个单一模型分别对返矿量进行预测;然后基于预测精度的数学期望和标准差,通过求取最优加权系数,建立烧结返矿量智能集成预测模型进行返矿量集成预测.运行结果表明,该集成模型的预测精度高于单一模型,能有效地对返矿量进行预测. Based on the fact that the quantity of return mines is hard to predict effectively, an intelligent integrated prediction model is proposed. The quantity of sintering return mines is respectively predicted by using two single models, improved gray system (IGS) and support vector machine (SVM). Then, based on two precision indicators of mean and deviate, an intelligent integrated prediction model is introduced to predict the quantity of sintering return mines by calculating optimal weight coefficient. The prediction results show that the prediction precision of the integrated model is higher than that of single model, and it can predict the quantity of sintering return mines effectively.
出处 《控制与决策》 EI CSCD 北大核心 2008年第4期450-454,459,共6页 Control and Decision
基金 国家杰出青年基金项目(60425310)
关键词 返矿量预测 智能集成预测模型 预测精度 多目标规划 Quantity of return mines prediction Intelligent integrated prediction model Prediction precision Multiobjectives programming
  • 相关文献

参考文献8

二级参考文献47

共引文献167

同被引文献109

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部