摘要
This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thick pure-base of silicon with no generation-recombination-trapping. Numerical solutions are rapidly obtained for the three potential variables,electrostatic and electron and hole electrochemical potentials,to give the electron and hole surface and volume channel currents,using our cross-link two-route or zig-zag one-route recursive iteration algorithms. Boundary conditions on the three potentials dominantly affect the intrinsic-structure DC characteristics,illustrated by examples covering 20-decades of current (10-22 to 10-2 A/Square at 400cm^2/(V · s) mobility for 1.5nm gate-oxide, and 30nm-thick pure-base). Aside from the domination of carrier space-charge-limited drift current in the strong surface channels,observed in the theory is also the classical drift current saturation due to physical pinch-off of an impure-base volume channel depicted by the 1952 Shockley junction-gate field-effect transistor theory,and its extension to complete cut-off of the pure-base volume channel,due to vanishing carrier screening by the few electron and hole carriers in the pure-base,with Debye length (25mm) much larger than device dimension (25nm).
本文报告用双极场引晶体管(BiFET)电化电流解析理论计算的内禀结构直流特性,晶体管有两块等同MOS栅,纳米厚度纯硅基,没有产生复合和俘获.用交叉双路或Z形单路递归循环算法,很快得到三个势变量的数字解:静电势,电子和空穴电化学势,从而算出电子和空穴表面和体积沟道电流.三种势边界条件主导地影响内禀结构直流特性,用20个量级跨度电流说明.(10-22-10-2A/□,迁移率400cm^2/(V.s) ,1.5nm厚栅氧化层,30nm厚纯基)强表面沟道内载流子空间电荷限制飘移电流起主导作用,除此以外理论上还观察到,体积沟道物理夹断导致经典飘移电流饱和,因德拜长度(25μm)远大于器件尺寸(25nm) ,纯基内少量电子和空穴载流子屏蔽消失导致纯基内体积沟道完全切断.这种切断是从在1952Shockley结栅场引晶体管理论中描述的非纯基体积沟道物理夹断推理而来.
基金
CTSAH Associates(CTSA)资助~~