期刊文献+

关联噪声驱动的非对称双稳系统的随机共振 被引量:10

Stochastic resonance in an asymmetric bistable system driven by correlated noise
原文传递
导出
摘要 运用统一色噪声近似理论和两态模型理论,研究了周期矩形信号和关联的乘性色噪声和加性白噪声驱动的非对称双稳系统的随机共振现象,得到了适合信号任意幅值的信噪比表达式.信噪比是乘性噪声强度、加性噪声强度、乘性噪声自关联时间、噪声耦合强度的非单调函数,所以该双稳系统中出现了随机共振.同时,调节加性噪声强度比调节乘性噪声强度更容易产生随机共振.势阱静态非对称性和噪声之间的耦合强度对信噪比的影响是不同的. The phenomenon of stochastic resonance (SR) in a bistable system subject to correlated multiplicative colored and additive white noises and a periodic rectangular signal with a constant component is investigated in the unified colored noise approximation and by applying the two-state theory. The expression of the signal-to-noise ratio (SNR) is obtained for arbitrary signal amplitude. The SNR is a non-monotonic function of intensities of multiplicative colored and additive white noises, correlation time of multiplicative colored noise and the strength of the coupling between noises, so SR appears in the bistable system. Meanwhile, it is more effective to control SR through adjusting the additive white noise intensity than adjusting the multiplicative colored noise intensity. Moreover, the effects of potential asymmetry and the strength of the coupling between noises on SNR are opposite.
作者 周丙常 徐伟
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第4期2035-2040,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10472091 10332030)资助的课题~~
关键词 非对称双稳系统 随机共振 信噪比 周期矩形信号 asymmetric bistable system, stochastic resonance, signal-to-noise ratio, periodic rectangular signal
  • 相关文献

参考文献28

  • 1Benzi R,Sutera A,Vulpiani A 1981 J. Phys. A:Math. Gen. 14 L453 被引量:1
  • 2Fauve S, Heslot F 1983 Phys. Lett. A 97 5 被引量:1
  • 3McNamara B, Wiesenfeld K, Roy R 1988 Phys. Rev. Lett. 60 2626 被引量:1
  • 4McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854 被引量:1
  • 5Dykman M I, Mannella R, McClintock P V E, Stocks N G 1990 Phys. Rev. Lett. 65 2606 被引量:1
  • 6Hu G, Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030 被引量:1
  • 7Zhou T, Moss F,Jung P 1990 Phys. Rev. A 42 3161 被引量:1
  • 8Masoliver J,Robinson A 1995 Phys. Rev. E 51 4021 被引量:1
  • 9Porra J M 1997 Phys. Rev. E 55 6533 被引量:1
  • 10Dhara A K,Mukhopadhyay T 1999 Phys. Rev. E 60 2727 被引量:1

二级参考文献34

  • 1[1]Benzi R,Sutera A, Vulpiani A 1981 J. Phys. A 14453 被引量:1
  • 2[2]Liang Q Y,Cao L, Wu D J 2003 Chin. Phys. 12 1105 被引量:1
  • 3[3]Hu G,Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030 被引量:1
  • 4[4]Tessone C J,Wio H S, Hanggi P 2000 Phys. Rev. E 62 4623 被引量:1
  • 5[6]Hu G, Ditzinger T, Ning C Z et al 1993 Phys. Rev. Lett. 71 807 被引量:1
  • 6[7]Osipov V V, Ponizovskaya E V 2000 Phys. Lett. A 271 191 被引量:1
  • 7[8]Dhara A K, Mukhopadhyay T 1999 Phys. Rev. E 60 2727 被引量:1
  • 8[9]Fulinski A, Gora P F 1999 J. Stat. Phys. 101 483 被引量:1
  • 9[10]Rosario N,Mantegna N,Spagnolo B et al 2001 Phys. Rev. E 6311101 被引量:1
  • 10[11]Vilar J M G, RubiJM1997Phys. Rev. Lett. 78 2882 被引量:1

共引文献30

同被引文献49

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部