期刊文献+

Levy噪声下一阶线性系统的弱信号复原分析 被引量:10

Weak signal recovery analysis in first-order linear system under Levy noise
下载PDF
导出
摘要 将Levy噪声与一阶线性随机共振SR系统相结合,采用Levy噪声模型和弱正弦信号模型,研究了不同Levy噪声环境下的调参广义随机共振现象及弱信号复原。首先分析了Levy噪声的特征指数α、对称参数β以及强度系数D对输入信噪比的作用规律;然后探究了不同分布的Levy噪声环境下一阶线性系统结构参数a的广义随机共振现象;最后提出了Levy噪声激励下线性系统高低频弱信号复原方法;研究结果表明:输入信噪比随α单调递增,随μ变化甚微,随D单调递减到一定程度后,不再减小保持定值;在Levy噪声作用下的一阶线性系统不能产生传统意义上的随机共振现象,但却存在互相关系数随结构参数a非单调变化的广义随机共振现象;在信号复原过程中,理论分析与实际仿真结果一致,证明所提复原方法准确可行。 The Levy noise is combined with first-order linear stochastic resonance (SR) system, Levy noise model and weak sinusoidal signal model are adopted. The parameter-adjusted generalized stochastic resonance phenomenon and weak signal recovery under different Levy noise environment are researched. Firstly, the influence laws of the characteristic index α , symmetric parameter β and intensity factor D of Levy noise on the noise distribution form and input signal-to-noise ratio of the first-order linear system are analyzed. Then, the generalized stochastic resonance phenomenon under different Levy noise distribution is studied by adjusting the first-order linear system parameter a. At last, the high and low frequency weak signal recovery methods of the first-order linear stochastic resonance system under Levy noise stimulation are proposed. The study results show that the input signal-to-noise ratio monotonically increases with the characteristic index a ; and monotonically decreases with the intensity factor D to a certain value, then stays at the constant value ; while β has little effect on the input signal-to-noise ratio. Under Levy noise, the first-order linear system does not generate traditional stochastic reso- nance phenominon; however, a parameter-adjusted generalized stochastic resonance phenomenon exists, in which the cross correlation coefficient nonmonotonically changes with the system parameter a. In the weak signal recovery process, the theoretical analysis results are consistent with the simulation results, which proves that the proposed recovery methods are feasible and accurate, and the achieved recovery effect is ideal.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第1期109-118,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金项目(61371164) 重庆市杰出青年基金项目(CSTC2011jjjq40002) 重庆市教育委员会科研(KJ130524)项目资助
关键词 Levy噪声 一阶线性系统 随机共振 弱信号复原 Levy noise first-order linear system stochastic resonance weak signal recovery
  • 相关文献

参考文献18

二级参考文献100

共引文献149

同被引文献107

引证文献10

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部