期刊文献+

图的上可嵌入性与圈中顶点度

Upper Embeddability of Graphs and the Degree of Vetex in Cycle
原文传递
导出
摘要 本文利用非上可嵌入图的充要条件,结合圈中顶点最大度与图的上可嵌入性之间的关系,得到了如下两个结果:(1)设G是2-边连通简单图,若对G中任意圈C,存在点x∈C满足:d(x)>3/|V(G)|+1,则图G是上可嵌入的,且不等式的下界是不可达的.(2)设G={X,Y;E}为简单二部图,且是2-边连通的.|X|=m,|y|=n(m,n≥3),若对G中任意圈C,存在点x∈C且x∈X满足:d(x)>3/n+1,则图G是上可嵌入的,且不等式的下界是不可达的. Combined with the relationship between the upper embeddability of graphs and the max degree of vetex in cycle, this paper proves the following results by using a sufficient and necessary condition on non-upper embeddable graphs: (1) Let G be a 2-edge-connected simple graph.If for any cycle C in G, there is a vertex x satisfying d(x)〉3^--{V(G)}+1, then 3 G is an upper embeddable graph and the bound is not achievable. (2) Let G^3={X, Y; E} be a simple bipartite graph, and G is 2-edge-connected.│X│=m,│Y│=n(m,n≥3). If for any cycle C in G, there is a vertex x∈X and x∈X satisfying: d(x)〉3^--^n+1, then G is an upper embeddable graph and the bound is not achievable.
出处 《应用数学学报》 CSCD 北大核心 2008年第1期173-179,共7页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金资助项目(10771062)以及教育部新世纪优秀人才支持计划项目
关键词 最大亏格 上可嵌入 BETTI亏数 二部图 graph cycle maximum genus upper embeddability Betti deficiency number bipartite graph
  • 相关文献

参考文献1

二级参考文献3

  • 1[2]Y Liu.Embeddability in graph[M].Beijing:Kluwer&Science, 1995. 被引量:1
  • 2[3]L Nebseky.A new characterization of the maximum genus of a graph[J].Czech.Math.J.1981,(106),604-613. 被引量:1
  • 3[4]Y Q Huang and Y P Liu.Maximum genus of graphs with diameter three[J].Discrete Math,1999,(194):139-149. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部