期刊文献+

图的局部连通性与上可嵌入性

Locally connectivity and up-embeddability of a graph
下载PDF
导出
摘要 研究局部连通图中支撑树的变换.给出L.Nebesk定理的一个新证明,并将其推广得到一类新的上可嵌入图. This paper studied the transformation of spanning trees in a locally connected graph and gave a new proof of Nebesk theorem for up-embeddability of a locally connected graph and generalized it to a new class of upper-embeddable graphs.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期22-31,共10页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10671073) 上海市自然科学基金(05ZR14046)
关键词 最优树 上可嵌入 基本圈 optimal tree up-embeddable graph fundamental cycle
  • 相关文献

参考文献10

  • 1BONDY J A, MURTY U S R. Graph Theory with Applications[M]. London: MacMillan, 1976. 被引量:1
  • 2MOHAR B, THOMASSEN C. Graphs on Surfaces[M]. [S.I.]: Johns Hopkins University Press, 2001. 被引量:1
  • 3NORDHAUS E A, STEWART B M, WHITE A T. On the maximum genus of a graph[J]. J Combin Ser B, 1971(11): 258-287. 被引量:1
  • 4XOUNG N H. How to determine the maximum genus of a graph[J]. J Combin Theory Ser B, 1979, 26: 217-225. 被引量:1
  • 5LIU Y P. The maximum orientable genus of a graph[J]. Scientia Sinica, Special Issue on Math II, 1979, 41-55. 被引量:1
  • 6NEBESKY L. A New characterization of the maximum genus of Graphs[J]. J Czechoslvak Math, 1981, 106(31): 604-613. 被引量:1
  • 7HUANGYQ. Maximum genus of a graph in term of its embedding properties[J]. Discreate Math, 2003, 262: 171-180. 被引量:1
  • 8NEBESKY L. Every connected, locally connected graph is upper embeddable[J]. J Graph Theory, 1981(3): 197-199. 被引量:1
  • 9黄元秋,刘彦佩.图的生成树,基本圈与Betti亏数[J].数学物理学报(A辑),2004,24(4):496-500. 被引量:1
  • 10KUNDU S. Bounds on the number of disjoint spanning trees[J]. J Combin Theory Ser B, 1974, 17: 199-203. 被引量:1

二级参考文献11

  • 1Hunglin Fu, Minchu Tsai. The maximum genus of diameter three graphs.Australasian J Combinatorics, 1996, 14: 187-197 被引量:1
  • 2Yuanqiu Huang, Yanpei Liu. Maximum genus and maximum nonseparating indepedent set of a 3-regular graph. Discrete Math, 1997, 176: 149-158 被引量:1
  • 3Yuangqiu Huang, Yanpei Liu. Maximum genus and girth of graphs. Discrete Math, 1999, 194: 253-259 被引量:1
  • 4Bondy J A, Murty U S R. Graph Theory with Applications.London: Macmillan and New York: Elsevier, 1979 被引量:1
  • 5Gross J L, Tucker T W. Topological Graph Theory. New York: Wiley, 1987 被引量:1
  • 6Xoung N H. How to determine the maximum genus of a graph. J Combinatorial Theory Sereis B, 1979, 26: 217-225 被引量:1
  • 7Nebesky L. N-2-locally connected graphs and their upper embeddability. J Czechoslovak Math, 1991, 41: 731-735 被引量:1
  • 8Skoviera M. The decay number and the maximum genus of a graph. Math Slovaca, 1992, 42(4): 391-406 被引量:1
  • 9Stahl S. On the number of maximum genus embeddings of almost all graphs. Euro J Combinatorics, 1992, 13: 119-126 被引量:1
  • 10Chen J, Archdeacon D, Gross J L. Maximum genus and connectivity. Discrete Math, 1996, 149: 11-29 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部