期刊文献+

一种选择性的加权朴素贝叶斯分类器 被引量:3

A selected and weighted naive bayes classifier
下载PDF
导出
摘要 朴素贝叶斯分类器是一种简单而高效的分类器,但它的条件独立性假设影响了它分类的正确率.加权朴素贝叶斯是对它的一种扩展.通过分析属性相关性的度量和属性约简,选择一组最近似独立的属性约简子集,并结合加权朴素贝叶斯和选择性贝叶斯分类器的优点,提出一种选择性的加权贝叶斯分类器SWNBC.实验结果表明,与朴素贝叶斯分类器相比,WSANBC分类器具有较高的分类正确率. Naive Bayesian classifier is a simple and effective classifier, but its attribute independence assumption makes it unable to express the dependence among attributes, and affects its classification accuracy. Weighted naive Bayes is it extension. On the basis of analyzing the evaluation of condition attribute with correlation and attribute reduction and selecting a set of more independence attribute, The present paper presents SWNBC(A Selected and Weighted Naive Bayes Classifier) which combined the merits of SNBC and WNBC. Compared with Model, experimental results accuracy. Naive Bayesian Classification show EANBC has higher accuracy.
作者 王峻 刘淮生
出处 《湖南文理学院学报(自然科学版)》 CAS 2008年第1期77-79,83,共4页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 安徽省高等学校省级自然科学研究项目(KJ2007B075)
关键词 朴素贝叶斯 加权朴素贝叶斯 属性相关性 属性约简 权重 信息增益 naive Bayes Weighted naive Bayes Weight attribute with correlation attribute reduction Gain ratio
  • 相关文献

参考文献10

二级参考文献32

  • 1Michael S 张立昂等(译).计算理论导引[M].北京:机械工业出版社,2000.. 被引量:1
  • 2Michae1 S 张立昂译.计算理论导引[M].北京:机械工业出版社,2000.. 被引量:1
  • 3Quinlan J R. Discovering rules from large collection of examples:A case study[A]. In: Michine D. ed,Exoert Systmas in the micro Electronic Age[ C]. Edinburgh: Edinburgh University Press, 1979. 被引量:1
  • 4Quinlan J R. CA.5: programs for machine learning[M]. San Mateo: Morgan Kaufmann Publishers, Inc, 1993. 被引量:1
  • 5Loether H J, McTavish D G. Descriptive and Inferential Statistics:An Introduction[M]. [s. 1. ] : [s. hi, 1993. 被引量:1
  • 6Wang D L,16th World Computer Congress 2000 on Intelligent Information Processing,2000年,578页 被引量:1
  • 7张立昂(译),计算理论导引,2000年 被引量:1
  • 8Han Jiawei Kamber M.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:31
  • 9Pawlak Z.Rough Sets:Theoretical Aspects of Reasoning about Data[M].Kluwer Academic Publishers. 被引量:1
  • 10Keyun Hu,Lili Diao,Chunyi Shi.A Heuristic Optimal Reduct Algorithm,22nd intl.Sym[C].In :intelligent data engineering and automated learning(IDEAL2000) ,Hong Kong,2000-11. 被引量:1

共引文献74

同被引文献24

  • 1程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 2NIR FRIEDMAN, DAN GEIGER, MOISES GOLDSZMIDT. Bayesian Network Classifiers[ J]. Machine Learning, 1997, 29:131 - 163. 被引量:1
  • 3Pat L, Wayne I, Kevin T. An Analysis of Bayesian Classifiers. In Proceeding of the Tenth National Conference on Artificial Intelligence[ M ]. San Jose : AAAI Press, 1992:223 - 228. 被引量:1
  • 4Zijian Zheng,Geoffrey I W ,Kai Ming Ting. Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees[ C ]//the Proceeding of the Sixteenth International Conference on Machine Learning(ICML-99). [S.l.]:[s.n.], 1999:493-502. 被引量:1
  • 5Ying Yang, Geoffrey I W. A Comparative Study of Discretization Methods for Naive-Bayes Classifiers [ C ]//The 2002 Pacific Rim Knowledge Acquisition Workshop. Tokyo : [ s. n. ] ,2002 : 159 - 173. 被引量:1
  • 6Cerquides J , Ramom Lopez de Mantaras. The Indifferent Naive Bayes Classifier [ C ]//American Association for Artificial Intelligence. [ S. l. ] : [ s. n. ], 2003 : 341 - 345. 被引量:1
  • 7Jiang Su, Harry Zhang. Full Bayesian Network Classifiers[ C] //Proceedings of the 23rd international conference on Machine learning . [ S. l. ]: [ s. n. ], 2006: 879 - 904. 被引量:1
  • 8Numberger A, Borgelt C, Klose A. Improving Naive Bayes Classifiers Using Neuro-Fuzzy Learning [ C ]// Neural Information Processing, 1999 Proceedings ICONIP 99. 6th International Conference on. [ S. l. ] : [ s. n. ] , 1999:154- 159. 被引量:1
  • 9Geoffrey I W, Michael J P. Adjusted Probability Naive Bayesian Induction [ C ]//Proceeding of the Eleventh Australian Joint Conference on Artificial Intelligence. Berlin : Springer-Verlag, 1998:285 - 295. 被引量:1
  • 10HARRY Z, SHENG S L. Learning Weighted Naive Bayes with Accurate Ranking [ C ]//Fourth IEEE International Conference on Data Mining (ICDM'04). Brighton : [ s. n. ] ,2004:567 - 570. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部