期刊文献+

上下文广告中的一种文本分类方法

A text classification method for textual ads
下载PDF
导出
摘要 针对文本分类中的交叉类别问题,提出一种基于传统潜在语义分析方法的新算法NLSA(new latentsemantic analysis)对网页进行文本分类.该方法可以将相关但是不同类别中的标签和非标签数据统一在一个概率模型中,通过研究两个类别的共有主题,在不同类别中转换知识来帮助目标文本进行分类.该方法可以最大化利用原有标签数据对新文本进行分类.实验证明:该算法能够显著提高交叉类别的文本分类性能,比传统的文本分类器有更好的性能. At present,label data are rarely applied to classification in textual ads.The author proposes an approach based on traditional latent semantic analysis used in a cross-category for text classification and integrates labeled and unlabeled data from different but related category into a probabilistic model.By studying the common topics of two categories,the knowledge is converted in different categories to help target text categorization.This approach has the advantage that one can maximize the use of the original labeled data in a new text categorization.The experiment proves that this algorithm can dramatically improve the performance in cross-category text classification.
作者 赵耀 陈志敏
出处 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期43-46,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家高新技术研究发展计划(863)项目(2007AA01Z448)
关键词 上下文广告 文本分类 潜在语义分析 textual ads text classification latent semantic analysis
  • 相关文献

参考文献11

  • 1RIBEIRO-NETO B, CRISTO M, GOLGHER P B, et al. Impedance coupling in content-targeted advertising [C]// Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2005: 496-503. 被引量:1
  • 2王国才,张聪.一种基于粗糙集的特征加权朴素贝叶斯分类器[J].重庆理工大学学报(自然科学),2010,24(7):86-90. 被引量:7
  • 3JI Xiang, XU Wei. Document clustering with prior knowledge [C]// Proceedings of the 29th Annual Interna- tional ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR 06 (2006). Wash- ington, USA: ACM, 2006: 405-412. 被引量:1
  • 4JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[J].Comput Inf Sci, 1998, 1398(23):137-142. 被引量:1
  • 5NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM [J].Mach Learn, 2000, 39(2/3) : 103-134. 被引量:1
  • 6YANG Yi-ming. An evaluation of statistical approaches to text categorization[J]. J Inf Retr, 1999, 1 (1/2): 69- 90. 被引量:1
  • 7COHN D, CARUANA R, MCCALLUM A. Semi-supervised clustering with user feedback [R]// Computer Science Technical Report. New York: Cornell University, 2003: 16-21. 被引量:1
  • 8康楠,金蓓弘,李京.面向Blog的兴趣挖掘和推荐系统[J].计算机工程,2008,34(2):72-74. 被引量:5
  • 9AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. InfSci, 2008, 178(1): 37-51. 被引量:1
  • 10许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542

二级参考文献97

  • 1谌志群,张国煊.文本挖掘研究进展[J].模式识别与人工智能,2005,18(1):65-74. 被引量:49
  • 2石志伟,刘涛,吴功宜.一种快速高效的文本分类方法[J].计算机工程与应用,2005,41(29):180-183. 被引量:15
  • 3任纪生,王作英.基于特征有序对量化表示的文本分类方法[J].清华大学学报(自然科学版),2006,46(4):527-529. 被引量:4
  • 4程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1

共引文献556

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部