期刊文献+

基于ICA和BP神经网络相结合的掌纹识别 被引量:10

Palmprint recognition based on ICA and BP neural network
下载PDF
导出
摘要 提出了一种基于独立成分分析(ICA,Independent Comment Analysis)和多层前馈(BP,Back Propagation)神经网络相结合的方法对掌纹进行识别.首先采用一种新的方法检测角点,得到掌纹图像的不变特征点,根据这些点校正掌纹方向并得到掌纹的感兴趣区域.对该区域采用定点快速ICA算法(FastICA),得到掌纹特征子空间,然后构建BP神经网络,并采用训练样本得到的掌纹特征进行训练,得到合适的权值.对香港理工大学掌纹数据库进行测试,与主成分分析(PCA,Principal Components Analysis)提取特征的方法进行比较,取得了较高的识别率. A novel method based on independent comment analysis (ICA) and back propagation neural network (BPNN) was proposed to solve palmprint recognition. First, a new method was used to detect comer points as the invariant feature points in palm images. Then the palm images were aligned by the points, and the region of interest (ROI) of the images was gotten. In the next place, palmprint features were extracted from the ROI by a fast fixed-point algorithm for ICA (FastlCA). By means of this method, the original palmprint ROI images were transformed into a small set of feature space. Finally, the BPNN was trained by the feature spaces of the samples in the training set to get the appropriate weights. After the training, perform palm classification was applied. The method was tested on the Hong Kong Polytechnic University palmprint database. Experimental results show that method based on ICA achieves higher recognition rate than that based on principal components analysis (PCA).
作者 陈智 黄琳琳
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第3期290-294,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 独立成分分析 主成分分析 多层前馈(BP)神经网络 感兴趣区域 掌纹识别 independent comment analysis principal components analysis back propagation neural network region of interest palmprint recognition
  • 相关文献

参考文献15

二级参考文献43

  • 1李士心,刘鲁源.基于小波阈值去噪方法的研究[J].仪器仪表学报,2002,23(z2):478-479. 被引量:28
  • 2孟继成,杨万麟.独立分量分析在模式识别中的应用[J].计算机应用,2004,24(8):28-29. 被引量:11
  • 3孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993.. 被引量:28
  • 4焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:51
  • 5[1]TUKK M,PENTLAND A.Eigenface for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):72-86. 被引量:1
  • 6[2]BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs fsherfaces:recognition using class specific linear projection[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 7[3]YU H,YANG J Y.A Direct LDA algorithm for high-dimensional data-with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070. 被引量:1
  • 8[4]WU X J,YANG J Y,WANG S T,et al.A new algorithm for generalized optimal discriminant vectors[J].J Comput Sci & Technol,2002,17(3):324-330. 被引量:1
  • 9[5]YANG J,YANG J Y.Why can LDA be performed in PCA transformed space?[J].Pattern Recognition,2003,36:563-566. 被引量:1
  • 10[6]COMON P.Independent component analysis-a new concept?[J].Signal Processing,1994,36(3):287-314. 被引量:1

共引文献222

同被引文献112

引证文献10

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部