期刊文献+

Numerical simulation of busbar configuration in large aluminum electrolysis cell 被引量:4

Numerical simulation of busbar configuration in large aluminum electrolysis cell
下载PDF
导出
摘要 Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable. Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell. The configuration parameters, such as side riser entry ratio, number of cathode bars connected to each riser, vertical location of side cathode busbar and short side cathode busbar, distance between rows of cells in potline, the number of neighboring cells, ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed. The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution, 50% upstream cathode current passing under cell for magnetic field compensation, the distance between rows of 50 m is more stable.
作者 李茂 周孑民
出处 《Journal of Central South University of Technology》 EI 2008年第2期271-275,共5页 中南工业大学学报(英文版)
基金 Project(20010533009) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
关键词 numerical simulation aluminum electrolysis cell busbar configuration MAGNETOHYDRODYNAMIC 数字模拟 铝电解槽 母线构型 磁流体动力
  • 相关文献

参考文献12

  • 1周萍,梅炽,周乃君,姜昌伟.Effect of electromagnetic force on turbulent flow of molten metal in aluminum electrolysis cells[J].Journal of Central South University of Technology,2004,11(3):265-269. 被引量:3
  • 2Thorleif Sele.Instabilities of the metal surface in electrolytic alumina reduction cells[J].Metallurgical Transactions B.1977(4) 被引量:1
  • 3LACAMERA A F,ZIEGLER D P,KOZAREK R L.Magneto- hydrodynamics in the Hall-Heroult process,an overview[].Journal of Light Metals.1992 被引量:1
  • 4DROSTE C,SEGATZ M,VOGELSANG D.Improved 2-dimensional model for magnetohydrodynamic stability analysis in reduction cells[].Journal of Light Metals.1998 被引量:1
  • 5SEGATZ M,DROSTE C.Analysis of magnetohydrodynamic instabilities in aluminum reduction cells[].Journal of Light Metals.1994 被引量:1
  • 6GRJOTHEIM K,KVANDE H.Understanding the Hall-Heroult process for production of aluminum[]..1986 被引量:1
  • 7DUPUIS M,BOJAREVICS V,FREIBERGS J.Demonstration thermo-electric and MHD mathematical models of a 500 kAaluminum electrolysis cell (Part 2)[].Journal of Light Metals.2004 被引量:1
  • 8DUPUIS M,BOJAREVICS V.Weakly coupled thermo-electric and MHD mathematical models of an aluminium electrolysis cell[].Journal of Light Metals.2005 被引量:1
  • 9EL-DEMERDASH M F,ADLY A A,ABU-SHADY S E,ISMAIL W.Towards a more stable aluminum cell via busbar configuration optimization[].Journal of Light Metals.2000 被引量:1
  • 10GUSEV A,KRIUOKOVSKY V,KRYLOV L,PLATONOV V.Busbar optimization of high-current reduction cells[].Journal of Light Metals.2004 被引量:1

二级参考文献1

共引文献2

同被引文献41

  • 1周萍,梅炽,周乃君,姜昌伟.Effect of electromagnetic force on turbulent flow of molten metal in aluminum electrolysis cells[J].Journal of Central South University of Technology,2004,11(3):265-269. 被引量:3
  • 2李茂,周孑民,王长宏.300 kA铝电解槽电、磁、流多物理场耦合仿真[J].过程工程学报,2007,7(2):354-359. 被引量:24
  • 3Gusev A, Kriuokovsky V, Krylov L, et al. Busbar optimization of high-current reduction cells[C]//Light Metals. Warrendale, TMS, 2004: 467-472. 被引量:1
  • 4Grjotheim K, Kvande H. Understanding the Hall-Heroult process for production of aluminum[M]. Dusseldorf: Aluminum-Verlag, 1986. 被引量:1
  • 5Potocnik V. Principles of MHD design of aluminum electrolysis cells[C]//Light Metals. Warrendale, TMS, 1991: 1187-1193. 被引量:1
  • 6Dupuis M, Bojarevics V. Busbar sizing modeling tools: Comparing an ANSYS based 3D model with the versatile 1D model part of MHD-Valdis[C]//Light Metals. Warrendale, TMS, 2006: 341-346. 被引量:1
  • 7Urata N. Magnetics and metal pad instability[C]//Light Metals. Warrendale, TMS, 1985: 581-591. 被引量:1
  • 8Urata N. Wave mode coupling and instability in the internal wave in aluminum reduction cells[C]//Light Metals. Warrendale, TMS, 2005: 455-460. 被引量:1
  • 9Segatz M, Droste C. Analysis of magnetohydrodynamic instabilities in aluminum reduction cells[C]//Light Metals. Warrendale, TMS, 1994: 313-322. 被引量:1
  • 10Vogelsang D, Eick I, Segatz M, et al. From 110 to 175 kA: Retrofit of VAW Rheinwerk. Part I: Modernization concept[C]//Light Metals. Warrendale, TMS, 1997: 233-238. 被引量:1

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部