期刊文献+

改进的SRCDKF-PF算法及在BOT系统中的应用 被引量:2

Application of Improved SRCDKF-PF for BOT System
下载PDF
导出
摘要 针对纯方位目标跟踪(Bearing-Only Tracking,BOT)系统强非线性特点,提出一种新的解决方案:采用平方根中心差分卡尔曼滤波器(Square-RootCDKF,SRCDKF)产生粒子滤波提议分布,融入最新的观测数据影响;增加改进措施以提高滤波性能,如采用系统重抽样算法减少方差、应用马尔可夫链模特卡罗(Markovchain Monte Carlo,MCMC)方法消除粒子贫乏等。仿真表明该算法是有效的,针对当前BOT系统,比传统EKF、PF算法可靠性更好,跟踪精度更高。 A new solution was proposed to the bearings-only tracking (BOT) system, due to its strong nonlinear nature of the system. In the solution, the Square-Root CDKF (SRCDKF) proposal distribution was presented to update the particles, and it allowed the particle filter to incorporate the latest observations into a prior updating routine. Many improved methods were introduced to increase the filter performance, e.g. the systematic resample algorithm was used to decrease the covariance, and the Markov chain Monte Carlo (MCMC) method was used to eliminate the impoverishment of the samples, etc. Simulations show the improved SRCDKF-PF algorithm indicates higher reliability and better accuracy than the traditional PF and EKF algorithms for the current BOT system.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第6期1508-1510,1514,共4页 Journal of System Simulation
关键词 纯方位目标跟踪 粒子滤波 SRCDKF算法 SRCDKF-PF算法 bearings-only tracking (BOT), particle filter, SRCDKF algorithm, SRCDKF-PF algorithm
  • 相关文献

参考文献8

  • 1孙仲康,周一宇,何黎星著..单多基地有源无源定位技术[M].北京:国防工业出版社,1996:350.
  • 2Aidala V J. Kalman filter behavior in bearing-only tracking applications [J]. IEEE. Trans. On Aerospace and Electronic systems (S0018-9251), 1979, 15(1): 29-39. 被引量:1
  • 3Aidala V J, Hammel S. Utilization of modified polar coordinates for bearing-only tracking [J]. IEEE Trans. On automatic Control (S0018-9286), 1983, 28(3): 283-294. 被引量:1
  • 4Aidala V J, Nardone S. Biased estimation properties of file pseudo-linear tracking filter [J]. IEEE Trans. On Aerospace and Electronic systems (S0018-9251), 1982, 18(4): 432-441. 被引量:1
  • 5Gordon N J, Salmond D J, Smith A F. Novel approach to nonlinear/non Gaussian Bayesian state estimation [J]. IEE Proceedings-F (S0143-7070), 1993, 140(2): 107-113. 被引量:1
  • 6R van der Merwe. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models [D].Portland, OR, USA: OGI School of Science & Engineering at Oregon Health & Science University Portland, OR, April 2004. 被引量:1
  • 7Doucet A. On Sequential Simulation-Based Methods for Bayesian Filtering [R]// Technical Report, CUED/F-INFENG/TR310, Cambridge, England: Department of Engineering, Cambridge University, Cambridge, England, 1998. 被引量:1
  • 8Andrieu C, de Freitas N, Doucet A, et al. An introduction to MCMC for machine learning [J]. Machine Learning (S0885-6125), 2003, 50(1/2): 5-43. 被引量:1

同被引文献22

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部