期刊文献+

基于粗集和SVM的客户抵押贷款违约评估 被引量:4

Defaults assessment of mortgage loan with RS and SVM
下载PDF
导出
摘要 信贷风险是金融机构风险的主要来源。支持向量机是基于VC维和统计学习理论理念的一种新的机器学习方法。它在解决两类问题时是一种较好的分类方法,同时学习结果模型有较强的稳定性。在实际应用中,采用Grid-search方法调整支持向量机的惩罚参数,达到了更好的推广能力和预测结果。采用粗集对数据集进行预处理,属性约简,删除了多余的属性,然后再用支持向量机进行分类建立了住房抵押贷款信用风险评估模型,并与其他算法进行了比较,取得了良好的分类效果。 Credit risk is the primary source of risk to financial institutions.Support Vector Machine is a new machine learning method based on the idea of VC dimension and Statistical Learning Theory.It is a good classifier to solve binary classification problem and the learning results possess stronger robustness.We use Grid-search method adjusts these penalty parameters to achieve better generalization performances in our application.In this paper the attribute reduction of rough set has been applied as preprocessor so that we can delete redundant attributes,then default prediction model of the housing mortgage loan is estab- lished by using SVM.Classification performance is better than other classification algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第9期229-231,248,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60675008)
关键词 信用评估 支持向量机 属性约简 Grid—search credit rating Support Vector Machine: attribute reduction grid-search
  • 相关文献

参考文献14

二级参考文献27

  • 1Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Trans on NN,1999;10 (3):988~999 被引量:1
  • 2NELLO C,JOHN S T.An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[M].Cambridge University Press,2000 被引量:1
  • 3[4]Han Jiawei,Kamber M.DATA MINING concepts and techniques.北京:高等教育出版社,2001 被引量:1
  • 4[7]Cortes C,Vapnik V.Support vector networks.Machine Learning,1995 ;20:273-295 被引量:1
  • 5[8]http://lisp.vse.cz/pkdd99/Challenge/ 被引量:1
  • 6Henley W E. Statistical Aspects of Credit Scoring[ M]. Dissertation. The Open University, Milton Keynes, Uk 1995. 被引量:1
  • 7Henley W E, Hand D J. K-nearest neighbor classifier for assessing consumer credit risk[J]. Statistician, 1996, 44:77 -95. 被引量:1
  • 8Desai V S, Crook J N, & Overstreet G A. A comparison of neural networks and linear scoring models in the credit union environment[J]. European Journal of Operational Research, 1996, 18 : 15 - 26. 被引量:1
  • 9David West. Neural network credit scoring models[ J]. Computers Operation Research, 2000,27:1131 - 1152. 被引量:1
  • 10Jensen H L. Using neural networks for credit scoring[J]. 1992,18(1):15 - 16. 被引量:1

共引文献458

同被引文献84

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部