期刊文献+

对流占优问题的无网格自适应布点方案 被引量:3

Adaptive Distribute Points Technique for Convection Dominated Problems Combined with Meshless Method
下载PDF
导出
摘要 应用常规数值方法求解对流占优的对流扩散方程时会出现非物理的数值伪振荡现象。因此本文提出了一种基于无网格径向点插值法的自适应布点方案,并成功地解决了对流占优时的数值伪振荡问题。在自适应布点的实施过程中,该方案将无网格方法中的背景积分单元作为自适应控制的梯度计算单元,并将该控制单元场函数梯度的大小作为自适应的梯度控制指标,然后给定相应的梯度控制限,通过控制指标和梯度限的比较来指示高梯度区域进行自适应中心加点和梯度计算单元的分解。数值结果表明:这种基于无网格径向点插值法的自适应布点方案不仅能有效地消除对流占优时的数值伪振荡现象,而且它还具有计算精度高、数值稳定性好、算法实施简单、前后处理方便的优点。 It is well known that the numerical solutions of conventional methods may be corrupted by nonphysical oscillations when the convection action dominates the diffusion action in the transport problems. The adaptive distribute points technique was developed to overcome the instability issues in convection dominated problems simulated by radial point interpolation method. In the adaptive process of meshless method, the background mesh was considered as the cell to control the grads adaptively. The grads of the cell was regarded as Grads Index, and it decided whether or not to refine the cell by comparing with Grads Bounds. Two numerical examples were presented and the numerical results show that this technique is effective to solve convection dominated problems. In addition, these methods have high accuracy and good stabilization, the computational algorithms can be easily implemented, the preprocess and post process are very convenient.
出处 《力学季刊》 CSCD 北大核心 2008年第1期85-91,共7页 Chinese Quarterly of Mechanics
基金 国家自然科学基金重大项目(10590353) 陕西省自然科学基金(2005A16)
关键词 无网格方法 对流占优 自适应 meshless method convection dominated adaption
  • 相关文献

参考文献10

  • 1Liu G R. Mesh Free Methods: Moving Beyond the Finite Element Method[M]. Florida: CRC Press, 2003. 被引量:1
  • 2Belytschko T, Krongauz Y, Organ D. Meshless method: An overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139 : 3 - 47. 被引量:1
  • 3张雄,刘岩著..无网格法[M].北京:清华大学出版社,2004:258.
  • 4张小华,欧阳洁.线性定常对流占优对流扩散问题的无网格解法[J].力学季刊,2006,27(2):220-226. 被引量:9
  • 5Chen J S, Pan C H, Wu C T, Liu W K. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996,139:195 - 227. 被引量:1
  • 6Liu W K, Hao S, Belytschko T, Li S F, Chang C T. Multiple scale mesh free methods for damage fracture and localization[J]. Computational Materials Science, 1999,16:197 - 205. 被引量:1
  • 7Oden J T, Duarte C A M, Zienkiewicz O C. A new cloud-based hp finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1998,153:117 - 126. 被引量:1
  • 8Romkes A, Oden J T. Adaptive modeling of wave propagation in heterogeneous elastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2004,193:539 - 559. 被引量:1
  • 9Liu G R, Gu Y T. An Introduction to Meshfree Methods and their programming[M]. Dordrecht: Springer, 2005. 被引量:1
  • 10张小华..无网格方法在计算流体力学中的应用研究[D].西北工业大学,2006:

二级参考文献19

  • 1Donea J, Huerta A. Finite Element Methods for Flow Problems[M]. Chichester:Wiley, 2003 被引量:1
  • 2Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation [J]. Comput Methods Appl Mech Engrg, 1998,156:185 - 210. 被引量:1
  • 3Eduardo G D, Gustavo B A. A new stabilizsed finite element formulation for scalar convection-diffusion problems:The streamline and approximate upwind/Petrov-Galerkin method[J]. Comput Methods Appl Mech Engrg, 2004 ,192 : 3379 - 3396. 被引量:1
  • 4Monaghan J J. An introduction to SPH[J]. Comput Phys Comm, 1988,48:89 - 96. 被引量:1
  • 5Stephen J V. The application of smoothed particle hydrodynamics to problem in fluid mechanics[D]. Ph D thesis, Carmegie Mellon University, 2000. 被引量:1
  • 6Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements[J]. Comput Mech,1992,10:307-318. 被引量:1
  • 7Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int J Num Meth Engrg, 1994,37:229 - 256. 被引量:1
  • 8Belytschko T, Krongauz Y, Organ D. Fleming M, Krysl P. Meshless method: An overview and recent developments[J]. Comput Methods Appl Mech Engrg, 1996,139:3-47. 被引量:1
  • 9Onate E, Idelsohn S, Zienkiewica O C. A finite point method in computational mechanics: Application to convections to transport and fluid flow[J]. Int J Num Meth Engrg, 1996,39:3839 - 3866. 被引量:1
  • 10Liu W K, Sukky J, Zhang Y F. Repoducing kernel particle methods[J]. Int J Num Meth Fluids,1995,20: 1081 - 1106. 被引量:1

共引文献8

同被引文献18

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部