期刊文献+

不可压Stokes方程数值计算的无网格方法

The meshfree method for incompressible Stokes equations
下载PDF
导出
摘要 针对应用标准无网格方法求解不可压缩Stokes方程时压力会产生剧烈的数值伪振荡,给出一种消除压力伪振荡的无网格稳定化方法,并用其计算了2个不可压缩Stokes流动问题的经典算例.数值实验结果表明,此方法成功地消除了压力的数值伪振荡,验证了方法的有效性,且解的精度高、稳定性好,从而为无网格方法进一步模拟复杂流体流动问题提供了一种有效的思路. It is well known that the pressure field is likely to present spurious and oscillatory results when stand- ard mehsfree method is used for solving incompressible Stokes equations. The stabilization technique is proposed to overcome the instability issues in incompressible Stokes equations simulated by meshfree method in this paper. The method is applied to two typical problems of incompressible Stokes equations. Simulation results show that the method can successfully eliminate spurious oscillations of pressure distributions. Therefore, the validity and accuracy of this study are verified, and an effective measure for meshfree method to further simulate complex problems in fluid dynamics is provided.
作者 倪先桦 张伟
出处 《纺织高校基础科学学报》 CAS 2010年第1期62-66,共5页 Basic Sciences Journal of Textile Universities
关键词 无网格方法 稳定化 STOKES方程 meshfree method stabilization Stokes equations
  • 相关文献

参考文献9

  • 1LIU G R,GU Y T.An introduction to meshfree methods and their programming[M].Dordrecht:Springer,2005. 被引量:1
  • 2张伟.用同位网格算法实现三维方形开口流的数值模拟[J].纺织高校基础科学学报,2009,22(3):390-394. 被引量:1
  • 3张雄 刘岩.无网格方法[M].北京:清华大学出版社,2004.14-19. 被引量:10
  • 4GU Y T,ZHANG L C.Coupling of the meshfree and finite element methods for determination of the crack tip fields[J].Engineering Fracture Mechanics,2008,75:986-1004. 被引量:1
  • 5BELYTSCHKO T,KRONGAUZ Y,FLEMING M,et al.Smoothing and accelerated computations in the element free galerkin method[J].Journal of Computational and Applied Mathematics,1996,74:111-126. 被引量:1
  • 6段庆林,李锡夔.不可压缩Stokes流动的PSPG无网格法[J].计算力学学报,2007,24(2):192-196. 被引量:4
  • 7TEZDUYAR T,SATHE S.Stabilization parameters in SUPG and PSPG formulations[J].Journal of computational and applied mechanics,2003,4:71-88. 被引量:1
  • 8DONEA J,HUERTA A.Finite element methods for flow problems[M].New York:John Wiley & Sons Inc,2003. 被引量:1
  • 9FRIES T P,MATTHIES H G.A stabilized and coupled meshfree/meshbased method for the Incompressible navier-stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2006,195:6 205-6 224. 被引量:1

二级参考文献18

  • 1PANTAKAR S V.传热与流场流动的数值计算[M].张政,译.北京:科学出版社,1989. 被引量:1
  • 2OLIVEIRA P J. Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries [ J]. Journal of Non-Newtonian Fluid Mechanics ,2003,114( 1 ) :33-63. 被引量:1
  • 3OHVEIRA P J. Method for time-dependent simulations of viscoelastic flows : vortex shedding behind cylinder [ J ]. Journal of Non-Newtonian Fluid Mechanics. 2001, 101 (1/3) :113-137. 被引量:1
  • 4ALVES M A, PINHO F T, OLIVEIRA PJ. The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods [ J]. Journal of Non-Newtonian Fluid Mechanics. 2001,97 (2/3) :207-232. 被引量:1
  • 5OLIVEIRA P J, PINHO F T, PINTO G A. Numerical simulation of non-linear elastic flows with a general collocated finitevolume method [J]. Journal of Non-Newtonian Fluid Mechanics. 1998,79( 1 ) :1-43. 被引量:1
  • 6OLIVEIRA P J, PINHO F T. Plane contraction flows of upper convected Maxwell and Phan-Thien-Tanner fluids as predicted by a finite-volume method [ J]. Journal of Non-Newtonian Fluid Mechanics. 1999,88 (1/2) :63-88. 被引量:1
  • 7BELYTSCHKO T,KRONGZUZ Y,ORGAN D,et al.Meshless methods:An overview and recent developments[J].Comput Methods Appl Mech Engrg,1996,139:3-47. 被引量:1
  • 8LIU W K,LI S F,BELYTSCHKO T.Moving least-square reproducing kernel methods(I) Methodology and convergence[J].Comput Methods Appl Mech Engrg,1997,143:113-154. 被引量:1
  • 9BELYTSCHKO T,FLEMING M.Smoothing,enrichment and contact in the element-free Galerkin method[J].Computers and Structures,1999,71:173-195. 被引量:1
  • 10BELYTSCHKO T,FLEMING M,LIU W K.Smoothing and accelerated computations in the element free Galerkin method[J].Journal of Computational and Applied Mathematics,1996,74:111-126. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部