期刊文献+

基于ICA与聚类分析的支持向量机分类研究 被引量:4

Research of SVM’s classification based on ICA and cluster
下载PDF
导出
摘要 在ICA与聚类分析的基础上提出了一种改进的支持向量机分类模型——ICSVM模型。ICSVM模型中利用一种指标筛选算法与独立成分分析的方法将各数据指标转化为互相独立成分的数据指标。接着运用K-means方法对独立成分样本数据集进行聚类分析,再由获得的各子类中心数据构造初始的超平面,筛选出靠近初始超平面的支持类与亚支持类,并展开支持类与亚支持类中的样本数据点重新构造超平面,以便对数据进行分类。实验表明,对于样本比较多的数据集,与标准的SVM算法相比,ICSVM算法能够节约训练时间,同时能够提高分类的正确率。 Based on ICA and cluster analysis,this paper proposes ICSVM model.ICSVM model makes use of a selecting indices’ algorithm and ICA to transform the correlative indices into independent indices firstly.Then an initial classes is got by K-means cluster,and an initial super plane is made through the center of all subclass.By that the support classes and sub-support classes neighboring the initial super plane can be selected.Then expand the sample data of the support classes and sub-support classes and build up a new super plane by using them.Thus data can be classified by the new super plane.Compared with standard SVM,ICSVM has both better correct rate of classification and better training speed of ICSVM.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第8期169-171,共3页 Computer Engineering and Applications
基金 广东省科技公关计划( the Key Technologies R&D Program of Guangdong Province, China under Grant No.B10101033, No.A10202001) 广东省哲学社会科学十一五规划项目( No.06M03) 华南农业大学校长基金( No.4900- K06166)
关键词 支持向量机 独立成分分析 聚类分析 相关关系 Support Vector Machine(SVM) Independent Component Analysis(ICA) cluster analysis correlation
  • 相关文献

参考文献13

  • 1Cotes C,Vapnik V.Support vector networks[J].Machine Learning, 1995,20: 273-295. 被引量:1
  • 2Bartlett P L,Taylor J S.Generalization performance on support vector machines and other pattern classifiers[M].Cambridge,MA: MIT Press, 1999. 被引量:1
  • 3Sholkopf B,Sung K,Burges C J C,et al.Comparing support vector machine with Gaussian kernels to radial basis function classifiers[J]. IEEE Trans Signal Processing, 1997,45:2758-2765. 被引量:1
  • 4Vapnik V N.Statistical learning theory[M].[S.l.]:Publishing House of Electronics Industry,2004. 被引量:1
  • 5Sundararaghvan V,Zabaras N.Classification and reconstruction of three-dimensional microstructures using support vector machinos[J]. Computational Materials Science,2005,32:223-239. 被引量:1
  • 6Yao Y,Marcialis G.Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines[J].Pattern Recognition,2003,36:397-406. 被引量:1
  • 7Zhan Y,Shen D.Design efficient support vector machine for fast classification[J].Pattern Recognition, 2005,38 : 157-161. 被引量:1
  • 8Rai Y.A simplified approach to independent component analysis[J]. Neural Comput & Applic,2003,12:173-177. 被引量:1
  • 9Kocsor A,Csirik J.Fast independent component analysis in kernel feature spaces[C]//LNCS,2001,2234:271-281. 被引量:1
  • 10Theis F.Overcomplete ICA with a geometric algorithm[C]//LNCS, 2002,2415 : 1049-1054. 被引量:1

二级参考文献27

  • 1彭红毅,朱思铭,蒋春福.数据挖掘中基于ICA的缺失数据值的估计[J].计算机科学,2005,32(12):203-205. 被引量:9
  • 2Kantardzic M.Data Mining Concepts,Models,Methods,and Algorithms.Beijing:Tsing hua University Press,2003. 被引量:1
  • 3Feelders A D.Handling Missing Data in Trees:Surrogate Splits or Statistical Imputation.LNAI 1704,1999.329-334. 被引量:1
  • 4Grzymala-Busse J W.Rough Set Approach to Incomplete Data.In:LNAI 3070,2004.50-55. 被引量:1
  • 5Gerardo B D,et al.The Association Rule Algorithm with Missing Data in Data Mining.In:LNCS3043,2004.97-105. 被引量:1
  • 6Li Dan,et al.Towards Missing Data Imputation- A Study of Fuzzy K-means Clustering Method.In:LNAI 3066,2004.573-579. 被引量:1
  • 7Viharos Z J,et al.Training and Application of Artificial Neural Networks with Incomplete Data.In:LNAI 2358,2002.649-659. 被引量:1
  • 8Latkowski R.Incomplete Data Decomposition for Classification.In:LNAI 2475,2002.413-420. 被引量:1
  • 9Shigeyuki O,et al.Missing Value Estimation Using Mixture of PCAs.LNCS 2415,2002.492-497. 被引量:1
  • 10Jutten C,Herault J.Independent component analysis versus PCA.In:Proceeding of European Signal Processing Conf,1988.287-314. 被引量:1

共引文献11

同被引文献47

  • 1彭光金,王富平,么远,朱辉,刘瑜,邢晓蕊.基于PSO-LSSVM的电力造价灵敏度分析[J].电工技术学报,2013,28(S2):391-394. 被引量:5
  • 2苏艺,许兆义,鄢贵权.对应分析方法在地下水环境系统分析中的应用[J].北方交通大学学报,2004,28(4):48-53. 被引量:20
  • 3王明怡,吴平,王德林.基于相关性分析的基因选择算法[J].浙江大学学报(工学版),2004,38(10):1289-1292. 被引量:4
  • 4彭红毅,朱思铭,蒋春福.数据挖掘中基于ICA的缺失数据值的估计[J].计算机科学,2005,32(12):203-205. 被引量:9
  • 5Schena M, Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science, 1995,270( 5235 ) : 467-470. 被引量:1
  • 6Lockhart D J,Dong H,Byrne M C,et al.Expression monitoring by hybridization to high-density oligonucleotide arrays[J].Nat Biotechnol, 1996,14(13) : 1675-1680. 被引量:1
  • 7Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673-679. 被引量:1
  • 8Paul T K, Iba H.Prediction of cancer class with majority voting genetic programming classifier using gene expression data[J]. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2009,6(2) : 353-367. 被引量:1
  • 9Buldini B, Zangrando A.Identification of immunophenotypie signatures by clustering analysis in pediatric patients with philadelphia chromosome-positive acute lymphoblastic leukemia[J].American Journal of Hematology, 2010,85 (2) : 138-141. 被引量:1
  • 10Mei Z, Shen Q.Ye B X.Hybridized KNN and SVM for gene expression data classification[J].Life Science Journal, 2009, 6 (3) :61-66. 被引量:1

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部