期刊文献+

基于ICA与SVM的孤立点挖掘模型 被引量:7

Outlier Mining Model Based on ICA & SVM
下载PDF
导出
摘要 本文提出一种基于独立成分分析(ICA)与支持向量机(SVM)的孤立点挖掘模型——ISOM模型,用ICA时观测到的多维随机向量进行独立成分分解,用SVM估计独立成分的密度函数,克服了传统孤立点挖掘方法的一些缺点,为数据挖掘提供了一种有效的方法,并通过实验验证了该模型的合理性与正确性。 ISOM, Outlier Mining Model Based on ICA & SVM, is presented in this paper. This model transforms an observed multidimensional random vector into mutually independent components by ICA and estimates independent components' density function by SVM. Overcoming the defects of traditional outlier mining, the model of ISOM provides an efficient method for data mining, and its correctness and reasonableness ars also validated by the experiment results in this paper.
出处 《计算机科学》 CSCD 北大核心 2006年第9期175-177,共3页 Computer Science
基金 国家自然科学基金项目(10371135)资助。
关键词 孤立点 ICA SVM 密度函数估计 Outlier, ICA(independent component analysis), SVM(Support Vector Machine), Estimation of density function
  • 相关文献

参考文献15

  • 1Liu Xiao-Hui.Strategies for outlier analysis.Birkbeck College University of London,2000 被引量:1
  • 2Edwin M K,Raymond T Ng.Algorithm for Mining Distance-Based Outliers in Large Databases.In:Proc.of the 24th VLDB Conf.New York,USA,1998 被引量:1
  • 3Johanna H,Rocke D M.Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator.Computational Statistics & Data Analysis,2004,44:625~638 被引量:1
  • 4Ester M,et al.A Density-Based Algorithm for Discovering Clusters in large spatial databases.In:Proc.of 2nd Intl.Conf.on Knowledge Discovery and Data Mining,1996 被引量:1
  • 5Bayarri M J,Morales J.Bayesian measures of surprise for outlier detection.Journal of Statistical Planning and Inference 2003,111:3~22 被引量:1
  • 6Bullen R J,et al.Outlier detection in scatterometer data:neural network approaches.Neural Networks (in press) 被引量:1
  • 7Kantardzic M.Data Mining Concepts,Models,Methods,and Algorithms.Tsinghua University Press,2003 被引量:1
  • 8De Groot P J,Postma G J,et al.Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra.Analytica Chimica Acta,2001,446:71~83 被引量:1
  • 9Jutten C,Herault J.Independent component analysis versus PCA.In:Proc.of European Signal Processing Conf.1988.287~314 被引量:1
  • 10Yogesh S.A simplified approach to independent compoent analysis.Neural Comput & Applic,2003,12:173~177 被引量:1

二级参考文献12

  • 1Kantardzic M.Data Mining Concepts,Models,Methods,and Algorithms.Beijing:Tsing hua University Press,2003. 被引量:1
  • 2Feelders A D.Handling Missing Data in Trees:Surrogate Splits or Statistical Imputation.LNAI 1704,1999.329-334. 被引量:1
  • 3Grzymala-Busse J W.Rough Set Approach to Incomplete Data.In:LNAI 3070,2004.50-55. 被引量:1
  • 4Gerardo B D,et al.The Association Rule Algorithm with Missing Data in Data Mining.In:LNCS3043,2004.97-105. 被引量:1
  • 5Li Dan,et al.Towards Missing Data Imputation- A Study of Fuzzy K-means Clustering Method.In:LNAI 3066,2004.573-579. 被引量:1
  • 6Viharos Z J,et al.Training and Application of Artificial Neural Networks with Incomplete Data.In:LNAI 2358,2002.649-659. 被引量:1
  • 7Latkowski R.Incomplete Data Decomposition for Classification.In:LNAI 2475,2002.413-420. 被引量:1
  • 8Shigeyuki O,et al.Missing Value Estimation Using Mixture of PCAs.LNCS 2415,2002.492-497. 被引量:1
  • 9Jutten C,Herault J.Independent component analysis versus PCA.In:Proceeding of European Signal Processing Conf,1988.287-314. 被引量:1
  • 10Yogesh Singh.Rai C S.A simplified approach to independent component analysis.Neural Comput & Applic,2003,12:173-177. 被引量:1

共引文献8

同被引文献64

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部