期刊文献+

相空间重构优化研究 被引量:3

Study on Phase Space Reconstruction Optimization
下载PDF
导出
摘要 分析了传统相空间重构方法的不足,提出了相空间重构优化的标准和重构质量的评价方法。由于相空间重构过程中,重构参数的改变直接导致了吸引子的伸展和折叠行为,并形成相应的空间结构。通过无序度可以有效地刻画重构吸引子的不同性态,当无序度最小时可保证吸引子具有最规则的结构。重构质量的评价主要是通过检测吸引子拓扑结构的稳定性来实现,这比其他检验方法更具有客观性。仿真实验结果表明该方法的可行性。 The limitation of the traditional phase space reconstruction method is analyzed and the optimization criterion is presented. Since the variation of the embedding parameters leads to the folding and stretching behavior of the attractor in the reconstruction, the corresponding space structure is formed finally. The disorder degree can be used to characterize the attractor in different states. And when the disorder degree is minimal, the attractor has the best regular structure. The reconstruction quality is evaluted by the stability of the attractor topological structure, thus it more objective than the other method. Simulation results show that the method is effective.
出处 《数据采集与处理》 CSCD 北大核心 2008年第1期65-69,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(50675220)资助项目
关键词 相空间重构 无序度 嵌入维数 延迟时间 phase space reconstruction disorder degree embedding dimension delay time
  • 相关文献

参考文献18

  • 1Matthew B. Kennel. False neighbors and false strands: a reliable minimum embedding dimesion algorithm [J]. Physical Review E,2002,66:1-18. 被引量:1
  • 2Albano A M. Passamante A, Farrell M E. Using higher order correlations to define an embedding window[J]. Physica D,1991, 54: 85-97. 被引量:1
  • 3Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length [J]. Physica D, 1996, 95: 13- 28. 被引量:1
  • 4Kennel, B A. Determining embedding dimension for phase space reconstruction using a geometrical construction [J]. Physica Rev A, 1992,45: 3403-3411. 被引量:1
  • 5Gabriel B M, Gilmore R. Topological analysis and synthesis of chaotic time series [J]. Physica D, 1992,58:229 -242. 被引量:1
  • 6王军,石炎福,余华瑞.相空间重构中最优滞时的确定[J].四川大学学报(工程科学版),2001,33(2):47-51. 被引量:14
  • 7Temujin G, Danilo P M. A differential entropy based method for determing the optimal embedding parameters of a signal[J]. IEEE, 2003,6: 29-32. 被引量:1
  • 8Beirlant J, Dudewiz E J, Gyorfi L. Nonparametric entropy estimation: an overview[J]. International J Mathematical and Statistical Sciences, 1997, 6: 17- 39. 被引量:1
  • 9Zoran Aleksic. Estimating the embedding dimension [J]. Physica D: Nonlinear Phenomena, 1991,52: 362-368. 被引量:1
  • 10林梓,李魁俊,王丽,张晓婷.混沌吸引子的重构[J].长春邮电学院学报,1999,17(3):7-12. 被引量:4

二级参考文献2

共引文献16

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部