期刊文献+

环F2+uF2上码的覆盖半径 被引量:4

Covering radius of codes over ring F_2+uF_2
下载PDF
导出
摘要 研究了环F2+uF2上的码关于李距离的覆盖半径.利用李重量和线性的Gray映射,给出了覆盖半径的几个上下界. The covering radius of codes over ring F2+uF2 for the Lee distance was studied. By means of the Lee weight and the linear Gray map, several upper and lower bounds on the covering radius were obtained.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第2期145-148,共4页 JUSTC
基金 国家自然科学基金项目(60673074) 教育部科学技术研究重点项目(107065) 安徽省高校青年教师科研资助计划重点项目(2006jql002zd) 合肥工业大学科研发展基金项目(061003F)资助
关键词 覆盖半径 李距离 GRAY映射 陪集头 对偶码 covering radius Lee distance Gray map coset leader dual code
  • 相关文献

参考文献16

  • 1Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999,45(4): 1 250-1 255. 被引量:1
  • 2Udaya P, Bonnecaze A. Decoding of cyclic codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999, 45 (6): 2 148-2 157. 被引量:1
  • 3Dougherty S T, Gaborit P, Harada M, et al. Type Ⅱ codes over F2 +uF2 [J]. IEEE Trans Inform Theory, 1999, 45(1) : 32-45. 被引量:1
  • 4余海峰,朱士信.环F_2+uF_2上线性码及其对偶码的Mac Williams恒等式[J].中国科学技术大学学报,2006,36(12):1285-1288. 被引量:17
  • 5Zhu Shi-xin. Research on error-correcting codes and sequences ciphers over finite rings in information theory [D]. Hdei: Hefei University of Technology, School of Science, 2005. 被引量:1
  • 6Ling S, Sole P. Duadic codes over F2 +uF2 [J]. Appl Algebra in Engineering, Communication and Computing, 2001,12(5) : 365-379. 被引量:1
  • 7李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 8王新梅,肖国镇编著..纠错码:原理与方法 修订版[M].西安:西安电子科技大学出版社,2001:534.
  • 9Baicheva T, Vavrek V. On the least covering radius of binary linear codes with small lengths[[J]. IEEE Trans Inform Theory, 2003, 49(3) : 738-740. 被引量:1
  • 10Harada M, Ozeki M. Extremal self-dual codes with the smallest covering radius [J]. Discrete Mathematics, 2000, 215(1): 271-281. 被引量:1

二级参考文献21

  • 1吴品三.近世代数[M].北京:高等教育出版社,1979.. 被引量:19
  • 2Wan Zhe-xian.Quaternary Codes[M].Singapore:World Scientific,1997. 被引量:1
  • 3Carlet C.Z2^k-linear codes[J].IEEE Trans.Inform.Theory,1998,44(4):1 543-1 547. 被引量:1
  • 4San L,Blackford J T.Zp^k+1-linear codes[J].IEEE Trans.Inform.Theory,2002,48(9):2 592-2 605. 被引量:1
  • 5Bonnecaze A,Udaya P.Cyclic codes and self-dual codes over F2 +uF2[J].IEEE Trans.Inform.Theory,1999,45(4):1 250-1 255. 被引量:1
  • 6Dougherty S T,Gaborit P,Harada M,et al.Type Ⅱ codes over F2 +uF2[J].IEEE Trans.Inform.Theory,1999,45 (1):32-45. 被引量:1
  • 7MacWilliams F,Sloane N.The Theory of ErrorCorrecting Codes[M].Amsterdam,Netherland:North-Holland,1977. 被引量:1
  • 8Blackford T.Cyclic codes over Z4 of oddly even length[C].in Proc.Int.Workshop on Coding and Crypt.,WCC 2001,Paris,France,2001:83-92. 被引量:1
  • 9Macwilliams F J and Sloane N J A.The Theory of Error-Correcting Codes[M].Amsterdam:North-Holland publishing company,1977:190-191. 被引量:1
  • 10Bonnecaze A and Udaya P.Cyclic codes and self-dual codes over F2 + uF2[J].IEEE Trans.on Inform.Theory,1999,45(5):1250-1255. 被引量:1

共引文献31

同被引文献29

  • 1王冬银,朱士信.F_2+uF_2上长度为2n(n为奇数)的循环码个数[J].合肥工业大学学报(自然科学版),2006,29(11):1470-1472. 被引量:4
  • 2李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 3Hammons A R, Kumar P V, Calderbank A R, et al. The Z4-1inearity of Kerdock, Preparata, Goethals, and related code[J]. IEEE Trans Inform Theory, 1994, 40 (2): 301--319. 被引量:1
  • 4Wolfmann J. Binary images of cyclic codes over Z4 [J]. IEEE Trans Inform Theory, 2001, 47 (5) : 1773--1779. 被引量:1
  • 5Wolfmann J. Negacyclic and cyclic codes over Z4[J].IEEE Trans Inform Theory, 1999, 45 (7) :2527--2532. 被引量:1
  • 6Carlet C. Z2^k-linear codes[J]. IEEE Trans IT, 1998, 44 (4):1543--1547. 被引量:1
  • 7Tapia-Recillas H, Vega G. Some constaeyelic codes over Z2^k and binary quasi-cyclic codes[J]. Discrete Applied Mathematics, 2003,128(1) : 305 -- 316. 被引量:1
  • 8Greferath M, Sehrnidt S E. Gray isometries for finite chain rings[J]. IEEE Trans Inform Theory, 1999, 45 (7): 2522--2524. 被引量:1
  • 9Gulliver T A, Harada M. Codes over F3 +uF3 and improvements to the bounds on ternary linear codes[J]. Designs, Codes and Crypt,2001,22(1):89--96. 被引量:1
  • 10Nechaev A A. Kerdock codes in a cyclic form[J]. Discrete Math Appli, 1991,16(1) :365--384. 被引量:1

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部