期刊文献+

多电飞机电源系统智能机内测试诊断技术研究 被引量:5

Research on Intelligent Built-in Test Fault Diagnosis of More-electric Aircraft Electrical Power System
下载PDF
导出
摘要 提出了一种基于混合神经网络模型的智能机内测试(BIT)方法,并将其应用在多电飞机电源系统智能BIT故障诊断当中。对BIT各个测点的信号进行功率谱分析,在不损失谱线特征的前提下,利用小波的多尺度分析对谱线数量进行压缩,提取出信号在频域的特征量,并同小波包分解后的频带能量组成诊断用的特征向量。针对原有广义学习矢量量化(GLVQ)神经网络的算法缺陷进行改进,并在此基础上提出了一种混合网络模型结构。将提取的特征向量作为混合网络的学习样本,经训练后对电源系统的故障进行诊断。结果表明,基于这种混合网络的智能BIT方法诊断精度高,对测量噪声也具有良好的鲁棒性,可以有效提高多电飞机电源BIT系统的诊断性能。 An intelligent built-in test(BIT) technology based on generalized learning vector quantization(GLVQ) neural network was proposed and applied to the BIT system of more-electric aircraft electrical power system(MEAEPS). A power spectrum analysis method was employed to get the characteristics of BIT signals in frequency domain. In order to reduce the dimension of eigenvectors, the spectrum characteristics of BIT signals were compressed by using the wavelet packet decomposition, and the energy of each frequency-band was computed to form the final eigenvectors, which were used as learning samples to train the GLVQ neural network. Since the original GLVQ algorithm suffered from several major problems, some modifications were made and a supervised LVQ layer was added to the GLVQ network, which made the boundaries among the fault classes more discriminative thanusing the GLVQ network alone. The proposed method was applied to the BIT system of MEAEPS, and the results showed that the proposed method is promising to improve BIT performance of MEAEPS.
作者 刘震 林辉
出处 《兵工学报》 EI CAS CSCD 北大核心 2007年第11期1357-1362,共6页 Acta Armamentarii
基金 航空科学基金资助项目(04F53036)
关键词 自动控制技术 多电飞机 智能BIT 神经网络 小波包 故障诊断 automatic control technique more-electric aircraft intelligent built-in test neural network wavelet packet fault diagnosis
  • 相关文献

参考文献12

二级参考文献38

  • 1徐永成.BIT中智能故障诊断理论与方法研究:博士学位论文[M].长沙:国防科技大学,1999.. 被引量:1
  • 2曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社,1995.. 被引量:18
  • 3Zbytniewski John. SMART BIT/TSMD Integrate [ B ]. AD-A247192, Rome Laboratory, 1991. 被引量:1
  • 4Aylstock F, Elerin L, Hintz J, Learoyd C. Neural Network False Alarm Filter[ R ]. NTIS No : AD-A293114/5/HDM. 被引量:1
  • 5Rabiner L R. A tutorial on hidden markov models and selected applications in speech recognition [ J ]. Proceedings of the IEEE,1989, 77(2) : 257 - 286. 被引量:1
  • 6Atlas L, Ostendorf M, Bernard G D. Hidden markov models for monitoring machining tool-wear[ J ]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000,6 : 3887 - 3890. 被引量:1
  • 7Ocak H, Loparo K A. A new bearing fault detection and diagnosis scheme based on hidden markov modeling of vibration signals[ C ].IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 5 : 3141 - 3144. 被引量:1
  • 8Hatzipantelis E, Murray A, Penman J. Comparing hidden markov models with artificial neural network architectures for condition monitoring applications[ C ]. Fourth International Conference on Artificial Neural Networks, 1995, 6 : 369 - 374. 被引量:1
  • 9Sorensen Kelly B A, Sajecki A G. An analyzer for detecting intermittent faults in electronic devices[ C ]. AUTOTESTCON, Systems Readiness Technology Conference, 1994, 9 : 417 - 421. 被引量:1
  • 10Ismaeel A A, Bhatnagar R. Test for detection and location of intermittent faults in combinational circuits[ J ]. IEEE Trans. on Reliability, 1997, 46(2) : 269 - 274. 被引量:1

共引文献33

同被引文献40

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部