期刊文献+

ART-2及其改进方法综述 被引量:1

Survey of ART-2 and Its Improvement
原文传递
导出
摘要 ART-2是一种基于自适应谐振理论的自组织神经网络,广泛应用于模式聚类与识别等方面.本文介绍原始的 ART-2的结构和运算过程,分析它的训练算法,探讨其固有局限性.归纳总结各主要改进 ART-2的背景、目标和实现,评述它们的特征及适应场合.最后指出进一步改进 ART-2的一些思路,在解决具体问题运用各方法的一些参考原则和 ART-2的理论应用价值. ART-2 based on adaptive resonance theory is a kind of self-organizing neural network and usually utilized in pattern clustering and recognition, etc. In order to satisfy some specific requirements of certain applications or to simplify the hardware implementation, some improved versions of ART-2 have been put forward in recent years. In this paper, the original ART-2 is briefly introduced, its training algorithm is firstly analyzed, and its inherent limitations are explored. The background, objects and implementation of typical improved versions are summarized and generalized, and their properties and suitabilities are remarked on. Finally, the theoretical value and some rules pointing to future application and improvement of ART-2 are shown.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2007年第5期667-674,共8页 Pattern Recognition and Artificial Intelligence
基金 国家星火计划项目(No.2003EA770007) 湖南省自然科学基金项目(No.00JJY2061)资助
关键词 自适应谐振理论(ART) 模式聚类与识别 相似度 匹配度 相位信息 幅值 重置 Adaptive Resonance Theory (ART), Pattern Clustering and Recognition,Similarity, Match, Phase Information, Amplitude, Reset
  • 相关文献

参考文献27

  • 1Carpenter G A, Grossberg S. A Massively Parallel Architecture for a Self-Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics and Image Processing, 1987, 37 (1): 54-115. 被引量:1
  • 2Carpenter G A, Grossberg S. ART-2: Self-Organization of Stable Category Recognition Codes for Analog Input Pattern. Applied Optics, 1987, 26(23): 4919-4930. 被引量:1
  • 3Carpenter G A, Grossberg S. ART-3: Hierarchical Search Using Chemical Transmitters in Self-Organizing Pattern Recognition Architectures. Neural Networks, 1990, 3(2): 129-152. 被引量:1
  • 4Carpenter G A, Grossberg S, Rosen D B. ART-2A: An Adaptive Resonance Algorithm for Rapid Category Learning and Recognition. Neural Networks, 1991, 4(4): 493-504. 被引量:1
  • 5Carpenter G A, Grossberg S, Rosen D B. Fuzzy ART: Fast Stable I.earning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks, 1991, 4(6) : 759-771. 被引量:1
  • 6Cao Yongqiang, Wu Jianhong. Projective ART for Clustering Data Sets in High Dimensional Spaces. Neural Networks, 2002, 15(1) : 105-120. 被引量:1
  • 7Cao Yongqiang, Wu Jianhong. Dynamics of Projective Adaptive Resonance Theory Model: The Foundation of PART Algorithm. IEEE Trans on Neural Networks, 2004, 15(2): 245-260. 被引量:1
  • 8申岸伟,俞斌,关海鹰.ART-2神经网络分类器的研究[J].北方交通大学学报,1996,20(2):146-151. 被引量:11
  • 9申岸伟,俞斌.一种提高ART-2神经网络分类器性能的方法[J].信号处理,1996,12(1):28-32. 被引量:2
  • 10唐红卫,桑农,曹治国,张天序.ART-2神经网络的研究与改进[J].红外与激光工程,2004,33(1):101-106. 被引量:12

二级参考文献41

共引文献57

同被引文献14

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部