期刊文献+

基于改进的自适应克隆选择粒子群优化算法的多用户检测 被引量:3

Multi-User Detector Based on A New Advanced Self-Adaptation Clone Selection Particle Swarm Optimization Algorithm
原文传递
导出
摘要 为了提高多用户检测技术的性能,改善粒子群算法的局部搜索能力,将克隆选择算法(CS)和传统离散粒子群算法(DPSO)相结合,文中提出一种改进的自适应克隆选择粒子群优化算法(ACSPSO),并用于多用户检测。仿真证明,这种基于ACSPSO的检测器在误码率和收敛速度上都比DPSO和CS得到明显改善。 In order to improve the performance of Multi-User Detection technology and the local search capability of particle swarm optimization (PSO), clone selection algorithm (CS) is combined with traditional dispersed particle swarm optimization (DPSO), and a new advanced self-adaptation clone selection particle swarm optimization (ACSPSO) is proposed and used in Multi-User Detection. Computer simulation results have shown that the new detector based on ACSPSO is better than DPSO and CS in BER and convergence speed.
作者 张蕾 吕振肃
出处 《通信技术》 2007年第12期190-192,共3页 Communications Technology
关键词 多用户检测 离散粒子群算法 克隆选择算法 multi-user detection dispersed particle swarm optimization clone selection algorithm
  • 相关文献

参考文献6

  • 1李敏强等著..遗传算法的基本理论与应用[M].北京:科学出版社,2002:425.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization [A]. Proc of the IEEE Int Conf on Neural Networks[C]. Piscataway, NY, USA, IEEE 1995: 1942-1948. 被引量:1
  • 3Kennedy J, Eberhart R C. A discrete binary version of the particle swarm optimization algorithm[A]. Proc of the IEEE Int Conf on System, Man and Cybernetics [C]. Piscataway, NY, USA, IEEE 1997: 4104-4109. 被引量:1
  • 4许耀华,胡艳军,张媛媛.基于离散粒子群算法的CDMA多用户检测方法[J].通信学报,2005,26(7):109-113. 被引量:11
  • 5阎石,吕振肃.基于进化算法的多用户检测器[J].电子与信息学报,2006,28(2):223-227. 被引量:4
  • 6Castro L N De, Zuben F J Von. Learning and optimization using the colonel selection principle[J]. IEEE Trans, on Evolutionary Computation, 2002, (06): 239-251. 被引量:1

二级参考文献19

  • 1LUPAS R. Near-far resistance of multi-user detectors in asynchronous channels[J]. IEEE Trans on Commun, 1990, 38(4):496-508. 被引量:1
  • 2VERDU S. Optimum multi-user asymptotic efficiency[J]. IEEE Trans on Commun, 1986,34(9):890-897. 被引量:1
  • 3KENNEDY J, EBERHART R. Particle swarm optimization[A]. Proc IEEE Iht Conf on Neural Networks[C]. Perth, 1995. 1942-1948. 被引量:1
  • 4EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C]. Nagoya, 1995.39-43. 被引量:1
  • 5SHI Y H, EBERHART R. Parameter selection in particle swarm optimization[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. Washington D C, 1998. 591-600. 被引量:1
  • 6CLERC M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[A]. Proc of the Congress of Evolutionary Computation[C]. Washington D C, 1999.1951-1957. 被引量:1
  • 7LOVBJERG M, RASMUSSEN T K, KRINK T. Hybrid particle swarm optimizer with breeding and subpopulations[A]. Proc of the 3rd Genetic and Evolutionary Computation Conf[C]. 2001. 被引量:1
  • 8KENNEDY J, EBERHARTR. A discrete binary version of the particle swarm algorithm[A]. Proc IEEE Iht Conf on Systems, Man, and Cybernetics[C]. Orlando, 1997. 4104-4108. 被引量:1
  • 9VERDU S. Computational complexity of optimum multi-user detection[J]. Algorithmic, 1989,4(3):303-312. 被引量:1
  • 10Verdu S.Minimum probability of error for asychronous Gaussian multiple-access channels.IEEE Trans.on Info.Theory,1986,32(1):85-96. 被引量:1

共引文献13

同被引文献26

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部